Reg. No.					

III SEMESTER B.TECH. (AERONAUTICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2018

SUBJECT: INTRODUCTION TO AEROSPACE ENGINEERING

[AAE 2103]

REVISED CREDIT SYSTEM (26/11/2018)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

❖ Answer **ALL** the questions.

Missing data may be suitable assumed.

1A.	Analyze the terms isothermal and gradient atmospheric layers.	2
1B.	Define various types of altitude terminologies.	3
1C.	Derive and analyze hydrostatic equation with proper diagrams.	5
2A.	Examine compressible and incompressible flows	2
2B.	State and prove energy equation from fundamentals	3
2C.	Consider an airfoil in a flow of air, where far ahead of the airfoil, the pressure, velocity, and density are 2116 lb/ft², 500 mi/hr, and 0.002377 slug/ft³, respectively. At a given point A on the airfoil, the pressure is 1497 lb/ft². What is the velocity at point A? Assume isentropic flow. For air, Cp=6006 ft. lb/(slug)(0 R). The value of gas constant (R) is 1716.	5
3A.	Analyze the difference between finite and infinite wings.	2
3B.	Consider an airfoil mounted in a low-speed subsonic wind tunnel. The flow velocity in the test section is 100 ft/s, density is 0.002377 slug/ft³ and pressure is 2116 lb/ft². If the pressure at a point on the airfoil is 2102 lb/ft², what is the pressure coefficient?	3
3C.	Explain the various processes behind the formation of induced drag with proper diagrams.	5
4A.	Examine the need for power assisted aircraft control systems.	2

AAE 2103 Page 1 of 2

4B.	and explanations.					
4C.	Explain directional static stability with all necessary diagrams.					
5A.	Classify some of the advanced propulsion systems. What are their advantages and limitations?	2				
5B.	State and derive vis-viva equation from fundamentals.	3				
5C.	Explain bi-elliptic Hohmann transfer process in detail with all necessary diagrams and equations.	5				

AAE 2103 Page 2 of 2