		Reg. No.									
KARAKAR KARAKAR	MANIPAL INS (A constituent unit of M	TITUTE (AHE, Manipal	OF 7 57610	ГЕС 4)	CHN	OL	OG	Y			

III SEM B. Tech (BME) DEGREE MAKE UP EXAMINATIONS, DEC/JAN 2018-19

SUBJECT: ANALOG ELECTRONICS (BME 2102) (REVISED CREDIT SYSTEM) Saturday, 22nd December 2018: 9AM to 12 NOON

Instructions to Candidates:

TIME: 3 HOURS

MAX. MARKS: 50

3

1. Answer ALL questions. 2. Draw labeled diagram wherever necessary

1A. For the circuit shown in Fig 1A, determine the operating point and also draw the load line. Given $\beta = 100 \& V_{BE} = 0.7V$.

- 1B. How different is fixed-bias circuit from a collector to base bias circuit? Provide 3 reasons with the help of circuits and expression for stability factor.
- 1C. A two stage FET oscillator network uses a phase shifting network shown in Fig Q1C. Determine expressions for its loop gain, frequency of oscillations, minimum gain required for oscillations.

2A.	Why RC coupling is effective for frequencies greater than 10 Hz in a multistage amplifier? How RC coupling is different from transformer coupling in the case of multistage amplifiers? Give reasons with the help of circuit.	3				
2B.	Derive an expression for the frequency of oscillation of a Hartley oscillator.					
2C.	An RC phase shift oscillator has the phase shifting network in its feedback path Determine the expression for the input impedance of the phase shifting network.					
3A.	Arrive at an expression for the overall low 3 dB frequency of multistage amplifier having non-interacting stages.					
3B.	With the help of circuit explain mathematically the effect of capacitor C_b on the low frequency response of an RC coupled stage.					
3C.	A three stage RC coupled amplifier uses FETs with the following parameters: $g_m = 2.6mA/V$, $r_d = 7.7K$, $R_D = 10K$, $R_g = 0.1M$, $C_b = 0.005 \mu F$ and $C_s = 60PF$ for each stage. Evaluate overall mid band voltage gain in decibels, lower 3 dB frequency and overall lower 3 dB frequency.	4				
4A.	Design a phase shift oscillator to operate at a frequency of 5 KHz. Use MOSFET with $\mu = 55$ and $r_d = 5.5K$. The phase shift network is not to load down the amplifier.	3				
	a) Find minimum value of the drain circuit resistance R_D for which the oscillator will oscillate.					
	b) Find RC time constant.					
	c) Choose a reasonable value for R and find C.					
4B.	Design a suitable feedback amplifier circuit that is required to provide a gain of 4 and input impedance with feedback 50 K Ω .					
4C.	For a class B power amplifier providing a 20 V peak signal to a 16 ohm load and a power supply of 30 V, determine input power, output power and efficiency.					
5A.	How class A power amplifier is different from Class B power amplifier? Discuss with the help of circuit diagram and suitable waveforms.					
5B.	Arrive at the expression for the maximum efficiency of a class B power amplifier. Use suitable circuit and waveforms for arriving at the solution.					
5C.	Design a suitable audio frequency oscillator circuit that is required to provide oscillations with the help of stability factor 6.					