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1A. 

Find the Fourier series of ( ) (2 ),0 2 , ( 2 ) ( )f x x x x f x f x         and  

hence find the value of 
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1B. Obtain the half range Fourier cosine series of   ( ) 1 , 0 .
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1C. 

Find the Fourier transform of  
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2A. Find the Fourier sine and cosine transform of 
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2B. Find the analytic function f(z) = u+iv for which ( cos sin )xv e x y y y   3 

2C. 

If f(z) = u + iv  is  analytic function of z ,  show that         
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3A. 
(i)Find all possible expansion of 
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  about z = 0. 

(ii) Expand ( ) zf z e  about z = πi. 
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3B. Evaluate 3 2
: 2 2.

( 5 8 4)
C
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3C. 

Find the directional derivative of  at (1, 1, 1) along the unit normal 

to the surface   at . In what direction it is 

maximum? Find the maximum value.  
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4A. 
Given that  Verify Green’s theorem for   

around the triangle formed by the points  and . 
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Instructions to Candidates: 

 Answer ALL the questions. 



 

4B. 

Prove that      2 3 2 ˆˆ ˆcos 2 sin 4 3 2F y x z i y x j xz k       is a conservative 

force field, find its scalar potential and also find the work done by F in 

moving an object in this field from (0,1,-1) to , 1,2
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 
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4C. 
 If f(r) is a differentiable function of  then show that  is 

irrotational. Find f(r) so that  is also solenoidal. 
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5A. 
Verify Stoke’s  theorem for 

2 2A=(2x-y)i-yz j-y zk  where S is the upper  half 

surface of the sphere 
2 2 2 1x y z  

 and C is the boundary. 
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5B. 

Derive the D’Alembert’s  solution of the one dimensional wave equation 

subject to the initial conditions u(x,0) = f(x) and ( ,0) 0.
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5C. 

Assuming the most general solution, solve the one dimensional heat 

equation 2
t xxu c u  in a  laterally insulated bar of length 10 cms whose 

ends are kept at zero and the initial temperature is ( ) (10 ),0 10.f x x x x     
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