



MANIPAL

## A Constituent Institution of Manipal University **III SEMESTER B.TECH. (ECE/EEE/ICE/BME) END SEMESTER EXAMINATIONS, NOV. 2018**

## SUBJECT: ENGINEERING MATHEMATICS-III [MAT 2102] **REVISED CREDIT SYSTEM** (22/11/2018)

Time: 3 Hours

MAX. MARKS: 50

## **Instructions to Candidates:**

✤ Answer ALL the questions.

| 1A.          | Find the Fourier series of $f(x) = x(2\pi - x), 0 \le x \le 2\pi, f(x + 2\pi) = f(x)$ and<br>hence find the value of $\sum_{n=1}^{\infty} \frac{1}{n}$                                           | 4 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|              | hence find the value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$ .                                                                                                                                    |   |
| 1 <b>B</b> . | Obtain the half range Fourier cosine series of $f(x) = 1 - \frac{x}{l}, 0 \le x \le l$ .                                                                                                         | 3 |
| 1C.          | Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2, &  x  \le a \\ 0, &  x  > a \end{cases}$ and hence                                                                                | 3 |
|              | evaluate $\int_{0}^{\infty} \frac{\sin t - t \cos t}{t^{3}} dt.$                                                                                                                                 |   |
| 2A.          | Find the Fourier sine and cosine transform of $f(x) = \frac{1}{\sqrt{x}}$ .                                                                                                                      | 4 |
| 2B.          | Find the analytic function $f(z) = u+iv$ for which $v = e^{-x}(x\cos y + y\sin y)$                                                                                                               | 3 |
| 2C.          | If $f(z) = u + iv$ is analytic function of z, show that<br>$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) u^p = p(p-1)u^{p-2}  f'(z) ^2$ .                      | 3 |
| 3A.          | (i)Find all possible expansion of $\frac{z+1}{z^2-z-2}$ about $z = 0$ .<br>(ii) Expand $f(z) = e^z$ about $z = \pi i$ .                                                                          | 4 |
| 3B.          | Evaluate $\oint_C \frac{z}{(z^3 - 5z^2 + 8z - 4)} dz$ where $C:  z - 2  = 2$ .                                                                                                                   | 3 |
| 3C.          | Find the directional derivative of $x^2y^2z^2$ at (1, 1, 1) along the unit normal to the surface $x^2+y^2+z^2=4$ at $(1,\sqrt{2}, 1)$ . In what direction it is maximum? Find the maximum value. | 3 |
| 4A.          | Given that $F = (2x + y^2)i + (3y - 4x)j$ . Verify Green's theorem for $\oint_C F.dr$ around the triangle formed by the points $(0, 0), (2, 0)$ and $(2, 1)$ .                                   | 4 |

| 4B. | Prove that $\vec{F} = (y^2 \cos x + z^3)\hat{i} + (2y \sin x - 4)\hat{j} + (3xz^2 + 2)\hat{k}$ is a conservative force field, find its scalar potential and also find the work done by $\vec{F}$ in moving an object in this field from (0,1,-1) to $(\frac{\pi}{2},-1,2)$ . | 3 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4C. | If f(r) is a differentiable function of $r =  \vec{r} $ then show that $f(r)\vec{r}$ is irrotational. Find f(r) so that $f(r)\vec{r}$ is also solenoidal.                                                                                                                    | 3 |
| 5A. | Verify Stoke's theorem for $\vec{A}=(2x-y)i-yz^2j-y^2zk$ where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is the boundary.                                                                                                                        | 4 |
| 5B. | Derive the D'Alembert's solution of the one dimensional wave equation<br>subject to the initial conditions $u(x,0) = f(x)$ and $\frac{\partial u}{\partial t}(x,0) = 0$ .                                                                                                    | 3 |
| 5C. | Assuming the most general solution, solve the one dimensional heat equation $u_t = c^2 u_{xx}$ in a laterally insulated bar of length 10 cms whose ends are kept at zero and the initial temperature is $f(x) = x(10-x), 0 \le x \le 10$ .                                   | 3 |