	Reg.No										
--	--------	--	--	--	--	--	--	--	--	--	--

III SEMESTER B.TECH. (CHEMICAL ENGINEERING) MAKEUP EXAMINATIONS, DECEMBER 2018

SUBJECT: CHEMICAL PROCESS CALCULATIONS [CHE 2101]

REVISED CREDIT SYSTEM

Time: 3 Hours

(29th December 2018, FN)

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL questions.
- ✤ Missing data, if any, may be suitably assumed.
- Atomic Mass- Mg:24, O:16, N:14, S: 32, Na: 23, H:1, C:12, Ca:40, Cl:35.5, Cu: 63.5, P:31, Cr:52, K:39.

1A. Convert:

- i. $1500 \text{ km}^3/\text{ yr to m}^3/\text{day}$
- ii. $10 \text{ BTU/lb}^{\circ}\text{F}$ to $kJ/kg^{\circ}\text{C}$
- **1B** Two engineers are calculating the average molecular wt. of gas mixture containing O_2 and other gases. One uses the correct mol.wt. of 32 and finds the avg. mol. wt. as 37.6. The other uses an incorrect value of 16 and determines the avg. mol. wt. as 32.8. What is the % of O_2 in the mixture.

1C. Answer the following:

- i. How many moles are there in 50.0 g of DMSO (Di-Methyl Sulfoxide)- (CH₃)₂ SO?
- ii. If the specific gravity of DMSO is 1.1, what is the density in g/cm^3 ?
- iii. What is the volume occupied by 50.0 g of DMSO in cm³ and ft³?
- iv. How many molecules are contained in 50.0 g of DMSO?
- 2A. A solution containing 23 per cent by mass of sodium phosphate is cooled from 313 to 298 K in a Swenson-Walker crystalliser to form crystals of Na₃PO₄.12H₂O. The solubility of Na₃PO₄ at 298 K is 15.5 kg/100 kg water, and the required product rate of hydrated crystals is 200 kg/h. Determine the mass flow rate of feed required and the flow rate of mother liquor.
- 2B. Brick material containing 70% moisture is to be dried at the rate of 0.15 kg/s in a counter 5 current drier to give a product containing 5% moisture (both on wet basis). The drying

3

5

2

SO₂

medium consists of air heated to 373 K, at an absolute pressure of 1 atm with moisture having a partial pressure of 1 kN/m². The air leaves the drier at 313 K and 70% humidity. Calculate the amount of air required. The vapour pressure of water at 313 K is 7.4 kN/m².

3A Pure CO₂ can be prepared by treating limestone with aq. H₂SO₄. The limestone used 5 contains CaCO₃, MgCO₃ and inerts. The acid used contains 12% H₂SO₄. The residue from the process had the following combinations. CaSO₄:8.56%, MgSO₄:5.23%, H₂SO₄:1.05%, Inerts:0.53%, CO₂: 0.12%, water: 84.51%

During the process, CO₂ and water vapors are distilled. Calculate:

- i) The analysis of limestone.
- ii) % excess of acid used.
- **3B** It is desired to make a 24% by wt. of caustic soda solution. It is done in 2 steps.
 - i. The caustic soda is dissolved in a dissolution tank in a correct quantity of water to produce 50% solution.
 - ii. After complete dissolution, the solution is taken to a dilution tank, where some more water is added to produce 24% by wt. of solution.

Calculate the wt. ratios of water added in step i) and step ii)

- **4A** Analysis of flue gas obtained from a gas containing no N_2 is given as follows: CO₂=4.62%, CO=3.08%, O₂=8.91%, N₂=83.39%
 - i) Calculate the moles of dry air per mole of dry flue gas
 - ii) % excess air
 - iii) Net H₂ burned per mole of dry flue gas
 - iv) Kg of fuel burnt/mole of dry flue gas
 - v) Analysis of fuel gas which is a mix of CH_4 and C_2H_6

-297.11

4B Calculate the standard heat of reaction ΔH^o_R for the reaction $2FeS_2 + 11/2O_2 \rightarrow Fe_2O_3 + 4SO_2$

The standard near of forma	on of the compounds are				
Components	$\Delta H^{o}_{F} kJ/mole$				
FeS ₂	-178.03				
O ₂	0				
Fe ₂ O ₃	-822.75				

The standard heat of formation of the compounds are

5A Urea is produced as per the following reaction

 $2 \text{ NH}_3 + \text{CO}_2 \rightarrow \text{NH}_2\text{COONH}_4$

 $\rm NH_2COONH_4 {\rightarrow} \rm NH_2CONH_2{+}H_2O$

If conversion per pass of $\,NH_3$ to $\,NH_2COONH_4$ is 60% and 5000 kg of urea is to be produced, Find

- i. Volume of NH_3 to be fed at STP
- ii. The amount of H_2O produced

5

5

6

4

5B The flue gases are leaving the chimney of a boiler at 300°C the molar composition of which are as follows. $CO_2=11.3\%$, CO=0.26%, $H_2O=13.04\%$, $O_2=2\%$, $N_2=73.4\%$. Calculate Q in 1 kg mole of gas mixture above 25°C using the following C_p data kcal / (kg mole °K) $CO_2=6.396+10.1 \times 10^{-3} \text{ T} - 3.354 \times 10^{-7} \text{ T}^2$ $CO=6.48+1.566 \times 10^{-3} \text{ T} - 2.359 \times 10^{-7} \text{ T}^2$ $H_2O=6.732+1.505 \times 10^{-3} \text{ T} - 1.791 \times 10^{-7} \text{ T}^2$ $O_2=6.97+3.464 \times 10^{-3} \text{ T} - 4.83 \times 10^{-7} \text{ T}^2$ $N_2=6.529+1.448 \times 10^{-3} \text{ T} - 3.271 \times 10^{-7} \text{ T}^2$