Reg. No.	
----------	--

III SEMESTER B. TECH END SEMESTER EXAMINATIONS NOVEMBER 2018 SUBJECT: ENGINEERING MATHEMATICS III - [MAT 2103] (COMMON TO BT/CHE)

	Date	of Exam: 24.	11.2018		Time of I	Exam: 9.00	0-12.00	Max. N	Marks: 50	
		Instr	uction	s to Can	didates:	Answe	er ALL th	e questio	ns	
1A.	Find the Fourier series expansion of $f(x) = 2x - x^2$, $0 < x < 2$, $f(x + 2) = f(x)$ and hence show that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.							4		
1B.	Find the half range Fourier Cosine series expansion of $f(x) = 1 - \frac{x}{l}$, 0 < x < l. Also draw the graph of corresponding periodic extension of $f(x)$.						3			
1C.	Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2, & x \le 1 \\ 0, & x \ge 1 \end{cases}$ and hence evaluate $\int_0^\infty \frac{\sin t - t \cos t}{t^3} dt$.							3		
2A.	a) b)	Obtain firs t sec: A amp: Find the bi w = -5, -	t harmo 0 1.98 linear tr -1, 3. V	pnic in th $\frac{T}{6}$ 1.30 ransform Vhat are	e Fourier $T/_3$ 1.05 ation wh invariant	series of $\frac{T}{2}$ 1.30 ich maps points in	f amplitud $2T/_3$ -0.88 z = 0, 1, this trans	le A $\frac{5T}{6}$ -0.25 ∞ to sformation	T 1.98 n?	4
2B.	Find the cosine transform of $f(x) = e^{-ax}$, $a > 0$ and hence find $F_c\left\{\frac{1}{a^2+x^2}\right\}$.						3			
2C.	If $f(z) = u + iv$ is an analytic function of $z=x+iy$, show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2.$							3		
3A.	Find an analytic function $f(z) = u + iv$ for which $u = \frac{\sin 2x}{\cos 2y + \cos 2x}$						4			
3B.	Find all possible series expansion of $f(z) = \frac{1}{z^2+3z+2}$ about z=0.						3			
3C.	Evaluate $\oint_C \frac{z^2}{(z+1)(z^2+4)} dz$ where $C: z-2i = 3$.						3			
4 A.	Show that $\vec{A} = r^n \vec{r}$ is irrotational. Find the value of <i>n</i> for which the vector $\vec{A} = r^n \vec{r}$ is also solenoidal, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.							4		
4B.	Find the equation of tangent plane and normal line to the surface $x^2 + 2xy^2 - 3z^3 = 6$ at point (1, 2, 1).						3			

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

4C.	Evaluate $\bigoplus_{S} \vec{A} \cdot \hat{n} dS$ where $\vec{A} = (2x - y)\hat{i} - 2y\hat{j} - 4z\hat{k}$ and S is the surface of the region bounded by $x = 0, y = 0, z = 0, z = 3$ and $x^2 + y^2 = 16$ lying in the first octant.	3
5A.	Verify Green's theorem for $\oint_C (xy + y^2)dx + x^2dy$, where C is bounded by $y = x$ and $y = x^2$.	3
5B.	Solve $u_x + u_y = 2(x + y)u$ by separating the variables.	3
5C.	Solve the partial differential equation $u_{tt} = c^2 u_{xx}$ using the transformations $v = x + ct$ and $w = x - ct$ subject to the conditions $u(x, 0) = f(x)$ and $u_t(x, 0) = g(x)$.	4