

	expression for the time t taken to fill the tank, and then evaluate it for the stated conditions.	6
2B.	Derive steady-state energy balance equation with the help of a neat schematic diagram.	
	Clearly mention all the assumptions considered.	4
3A.	A pump delivers a power P kW to transfer Q m ³ /s of crude oil of density ρ kg/m ³ through a	
	long-distance horizontal pipeline of length L m, with a friction factor f_F . The installed cost of	
	the pipeline is c_1D_mL (where m = 1.4) and that of the pumping station is $(c_2 + c_3P)$; both	
	these costs are amortized over n years. Electricity costs \$c4 per kWh and the pump has an	
	efficiency η . The values of c ₁ , c ₂ , c ₃ , and c ₄ are known. The pump inlet and pipeline exit	
	pressure are the same. If there are N hours in a year, prove that the optimum pipe diameter	
	giving the lowest total annual cost is:	
	$D_{opt} = \left(\frac{5\alpha}{\beta m}\right)^{1/(m+5)}; \text{ where } \alpha = \left(\frac{32f_F\rho Q^3 L}{\pi^2}\right) \left(\frac{Nc_4}{1000\eta} + \frac{c_3}{n}\right); \beta = \frac{c_1 L}{n}$	
	If $c_1 = 2280$, $c_2 = 95000$, $c_3 = 175$, $c_4 = 0.11$, $\rho = 850$, L = 50000, $\eta = 0.75$, and $f_F = 0.0065$, all in	
	units consistent with the above, evaluate D_{opt} for Q = 0.2 m ³ /s, and n = 10 years.	5
3B.	Water is flowing turbulently at a mean velocity of $u_m = 10$ ft/s in a 1.0-in. I.D. horizontal pipe,	
	and the Fanning friction factor is f_F = 0.0060. What error in the pressure drop would ensue if	
	(erroneously) the assumption were made that the flow was laminar, abandoning the previous	
	value of the friction factor? Derive the pressure drop expression used here with the help of a	
	neat schematic diagram. Clearly mention all the assumptions considered.	5
4A.	For a liquid flowing through a packed bed, derive an expression for the pressure drop per unit	
	length of the bed with the help of a neat schematic diagram. Clearly mention all the	
	assumptions considered.	5
Data for Q.No. 4B. & 4C.: (Note: Refer the expression derived in Q.No. 4A to solve.)		
$D_{p} = 1 * 10^{-3} m; \rho_{f} = 1000 kg / m^{3}; \mu_{f} = 1 * 10^{-3} kg / m.s; \rho_{s} = 2500 kg / m^{3}$		
4B.	When u_0 is 0.005 m/s and ϵ = 0.5, calculate the ratio of the viscous loss to the kinetic energy	
	loss.	3
4C.	On further increasing u_0 , minimum fluidization is achieved. Assuming that the porosity of the	
	bed remains unaltered, determine the pressure drop per unit length (in Pa/m) under minimum	
	fluidization condition.	2
5A.	Describe a centrifugal pump characteristic curve with the help of a neat schematic.	3
5B.	List out the differences between centrifugal and positive-displacement reciprocating pumps.	3
5C.	Write the advantages and disadvantages of packed bed and fluidized bed columns.	4