Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

III SEMESTER B.TECH. END SEMESTER EXAMINATIONS NOVEMBER 2018

SUBJECT: MECHANICS OF STRUCTURES [CIE 2102]

Date of Exam: 22 /11/2018 Time of Exam: 9:00 AM to 12 NOON Max. Marks: 50

Instructions to Candidates:

 $\boldsymbol{\bigstar}$ Answer ALL the questions & missing data may be suitably assumed

1A.	Determine the forces in AB , AF , BC , BF and CF of the truss shown in Fig.Q1A . Tabulate the magnitude of the forces indicating the nature of forces	5	CO1
1B.	The cross section of a cantilever beam subjected to a point load of 20kN at its free end and span 3m has an unsymmetrical I -Section of overall depth 240mm . Width of top and bottom flanges are 160mm and 100mm respectively, thickness of top and bottom flanges are 20mm and 10mm respectively and web thickness is 10mm .Calculate the maximum shear stress and maximum bending stress in tension. $I_{NA} = 51.69 \times 10^6 \text{ mm}^4$	5	CO1
2A.	Derive the relationship between Twisting Moment, Shear Stress and angle of Twist for a circular shaft subjected to pure torsion with usual notations. Also state the assumptions made in the derivation of relationship.	5	CO2
2B.	A slender built up column, 8m long and both end fixed is having symmetrical H - cross section of dimensions as shown in Fig.Q2B . Calculate the safe load the column can carry for a factor of safety of 3 . Also calculate the slenderness ratio. Use Euler's formula. $\mathbf{E} = 190$ GPa.	5	CO2
3A.	A solid circular shaft 30 mm in diameter is subjected to a torque of 8 kNm . Find the principal stress in the shaft.	2	CO2
3B.	At a point in the section of a beam there is shear stress of 50MPa and tensile stress of 80MPa . Find the normal and shearing stresses on a plane inclined at 45° (anticlockwise) to the plane on which tensile stress is acting	3	CO2
3C.	A train of wheel loads 50kN , 60kN , 38kN and 50kN spaced at 1.0m , 2.0m and 1.2m respectively with 50 kN leading moves from left to right on a simply supported bridge of span 30m . Determine the absolute maximum bending moment	5	CO3
4A.	Determine the slope and deflection at mid span for a simply supported beam of span $6m$ carrying a downward point load of $30kN$ at $2m$ from left support. E = $200GPa$ and I= $40 \times 10^6 \text{ mm}^4$. Use moment area method. Flexural rigidity EI is uniform	5	CO4
4B.	Determine horizontal and vertical displacement of the free end C of vertical bent shown in Fig.Q4B using unit load method. Flexural rigidity EI is uniform	5	CO4
5A.	Using Macaulay's method, determine the vertical displacement at mid-point of a simply supported beam of length 5m . Also find the slope at the right hand support. The beam is	5	CO5

	subjected to downward concentrated load 12kN at 2m from left hand support and a clockwise couple 8kN-m at 3m from left hand support. $E = 210GPa$, $I=50\times10^6$ mm4. Flexural rigidity EI is uniform.		
5B.	A three hinged parabolic arch of span 25m and central rise 5m is subjected to UDL of 30kN/m on left half span and a point load of 200kN at 5m from right end. Find bending moment, normal thrust and radial shear at a section 5m from left support	5	CO5

Fig.Q2B All dimensions in mm