

III SEMESTER B.TECH. (COMPUTER SCIENCE ENGINEERING) MAKEUP EXAMINATIONS, DEC 2018

COMPUTER ORGANIZATION AND DESIGN [CSE 2101] REVISED CREDIT SYSTEM (22/12/2018)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data may be suitably assumed.
- **1A.** What are the rules of overflow conditions on arithmetic operations in a computer? Consider the numbers A which is equal to maximum number that can be represented using 10 bits and B which is the least number that can be represented using 10 bits. Perform addition as A + B and subtraction as A B of two numbers. Indicate if there is any overflow.

3M

1B. Write a RISC program for dot product of two vectors.

4M

1C. Describe Auto-increment and Auto-decrement with an example for each.

3M

2A. Starting from basic principles obtain the expressions for Generate and Propagate functions of 4-bit Carry Look-ahead Circuit. From the derived expression obtain a bit-stage cell. Using these cells and 4-bit CLC, construct a 4-bit Carry Look-ahead Adder.

5M

2B. Divide 30 by 13 using Non Restoring division algorithm. Show your calculations stepwise, to compute Quotient and Remainder.

5M

3A. Consider the Register Transfer Description as in Fig. Q.3A. Draw a neat microprogrammed control unit. Explain your design with the help of the contents of condition-select field and actions taken.

Declare registers A[4], B[4], C[4];

Declare buses inbus1[4], inbus2[4], inbus3[4], outbus[4];

Start: A←inbus1, B←inbus2, C←inbus3;

Loop: $A \leftarrow A-1$;

B**←**B-1;

C**←**C-1:

if A[0] = 0 and B[0] = 0 or C[0] = 0 then go to Loop

Output: outbus = A;

outbus = B;

outbus = C;

Halt: go to Halt;

Fig. Q.3A 4M

CSE 2101 Page 1 of 2

3B.	Write the binary listing of the microprogram for the microprogrammed control unit you designed in question 3A.	3 M
3C.	Explain unencoded format and encoded format of control information in microprogrammed control unit with an example for each.	3M
4A.	Draw the internal organization of a 16 X 16 memory chip. Explain its working principle.	4N
4B.	Explain with a neat sketch, how virtual memory address translation takes place based on the concept of fixed-length pages.	4N
4C.	Draw typical ROM cell and explain PROM.	2N
5A.	With a neat diagram, explain the principle of direct memory access and the use of DMA controller in a computer system.	4N
5B.	Explain the principle behind the transfer of control through the use of interrupts.	4N
5C.	Name the components that appear in the design of Hardwired control unit and	
	Microprogrammed control unit.	2N

CSE 2101 Page 2 of 2