
Reg. No.

CSE 2103 Page 1 of 2

III SEMESTER B.TECH. (COMPUTER SCIENCE & ENGINEERING)
END SEMESTER MAKEUP EXAMINATIONS, DECEMBER 2018

SUBJECT: DATA STRUCTURES [CSE 2103]
REVISED CREDIT SYSTEM

(27/12/2018)
Time: 3 Hours MAX. MARKS: 50

1A. Explain different dynamic memory allocation and de-allocation functions with

prototype and example to each. (4)

1B. Write a complete C program to illustrate passing and returning structures to and from

functions through pointers by to defining a structure FRACTION with numerator and

denominator (integers) as its data members. Write the functions with following

prototypes. Use type defined structure.

 void getFr(FRACTION *);

 void printFr(FRACTION *) ;
 FRACTION * multiFr(FRACTION *, FRACTION *);.

(4)

1C. Explain the functionality of the following recursive function.

int foo(int x, int y)

{

 if(x == 0) return y;

else

 return foo(x – 1,x +y);

}

(2)

2A. Write a complete C program to perform the following operations on a queue of integers

using only standard queue operations,

 i) Insertq(x): Add an item x to queue.

ii) Deleteq() : Remove an item from queue.

iii) Display(): Displaying queue elements

iv) Reverse() : Contents of queue are reversed using only standard queue operations. (4)

2B. Write a complete C program to implement push, pop and display operations of a stack

using dynamic array to hold 5 integers. If the stack is full when the push operation is

called, it must increase the size of the stack by 5 more integers. (3)

Instructions to Candidates:

 Answer ALL questions.

 Missing data may be suitably assumed.

CSE 2103 Page 2 of 2

2C. Write an algorithm to convert an infix expression to postfix expression. Trace the

algorithm for the infix expression: ((A+B)*D)*((E-F)-G) by filling the table given

below:

Current

symbol

scanned

Action

Taken(push/pop etc)

Content of the

stack

Intermediate result

(3)

3A. Write a function to add two polynomials, polynomial A, and polynomial B, represented

as singly linked lists. The function should accept pointers to linked lists representing

two polynomials and return a pointer to the linked list representing the sum. (4)

3B. Given a singly linked list, write a complete C program to find and display the middle

element of the linked list. If there are even number nodes, display the second middle

element.
(4)

3C. Write a C function to invert a singly linked list. The function should accept a pointer to

the given list and return a pointer to the inverted list. (2)

4A. Write a complete C program to do the following,

 i) Create a binary tree

 ii) Convert the created binary tree into binary search tree without changing structure of

the tree.

iii) Traverse the tree in preorder
(4)

4B. Write a function to construct an expression tree for the given postfix expression. Using

the same, draw expression tree for the postorder: ABC*+DE/- by considering each

letter as a single operand. (3)

4C. Construct a binary search tree for the given set of numbers {100, 80, 90, 88, 200, 150,

179, 300, 400} in the order they are read from left to right (100 as root). Display the

postorder traversal sequence of the constructed tree. (3)

5A. Derive an expression for finding the total cost of a BST (including both successful and

unsuccessful searches) for a set of elements. What is the relation of this expression

with optimal BST? Assume the root is at level 1.

(4)

5B. Define B-tree of order m and also mention its properties. What do you mean by 2-3-4

tree, explain with an example? (3)

5C. Given input list (26, 5, 77, 1, 61, 11, 59, 15, 48, 19). Show the working of merge sort

by showing the contents of the array after each pass.
(3)

