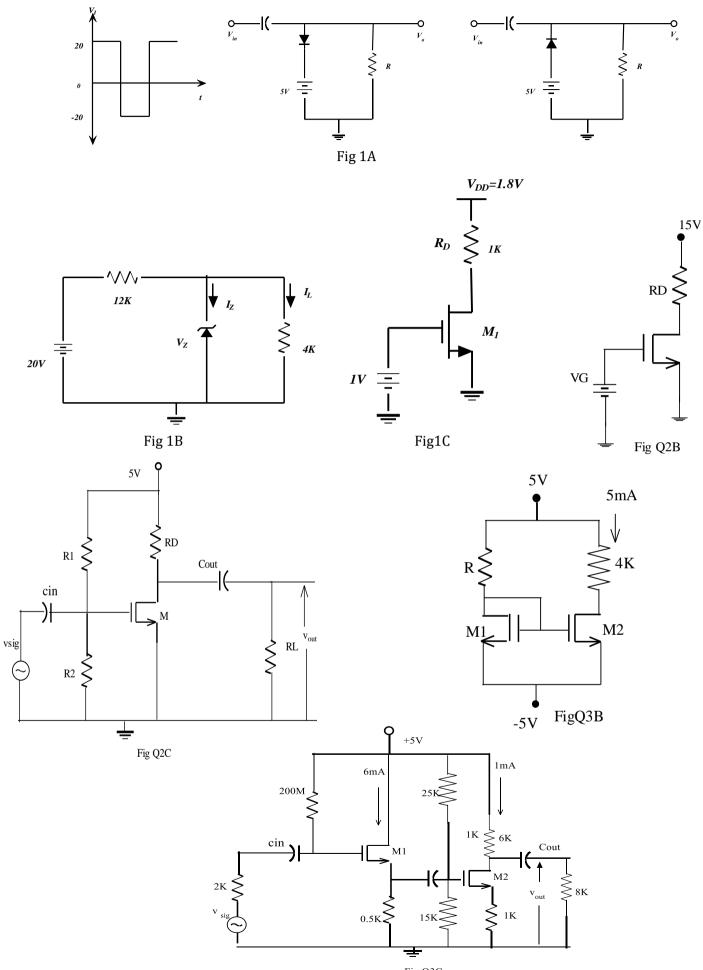
Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY


(A constituent Institution of MAHE, Manipal)

III SEMESTER B. TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKE UP EXAMINATIONS, JANUARY 2019

SUBJECT: ANALOG ELECTRONIC CIRCUITS [ELE 2105]

REVISED CREDIT SYSTEM

Time	e: 3 Hours D	ate: 02, January 2019	Max. Marks: 50
Instructions to Candidates:			
	✤ Answer ALL the questions.		
	 Missing data may be suitably a 	issumed.	
1A.	Sketch the steady state output volt Assume ideal diodes.	age v_0 for each circuit in Figure 1A with inpu	t voltage v _I . (05)
1B.	Consider the circuit shown in Figur and the power dissipated in the did	e 1B. The Zener diode voltage is $V_Z = 3.9V$. Det ode.	ermine I _Z , I _L (03)
1C .	Assume = 0 , compute $\frac{W}{L}$ of M_1 in saturation. Given $\mu_n C_{ox} = 200 \mu A/$	Figure 1C, such that the device operates at V^2 , $V_{TH} = 0.4V$	the edge of (02)
2A.	Derive the on resistance of the MO source voltage dependent.	SFET in the triode region. Prove that resistan	ce is gate to (02)
2B.		the Fig Q2B, find drain current, and volt n if $V_{th} = 1.5V$, $\mu_n C_{ox} \frac{W}{L} = 10mA/V^2$, and	age <i>V_{DS}</i> ,and
	$i) V_G = 1V, R_D = 2K$	ii) $V_G = 3V, R_D = 1K.$	(05)
2C.		for the voltage gain of 8dB with the Vth=0.6V.Current through R1, R2 is 100 Find $\frac{W}{L}$, R1, R2. Refer Fig 2C.	
3A.	Draw the circuit diagram of commo derive small signal gain for the sam	on gate configuration, Develop the small signal ie.	model and (06)
3B.	Determine the resistance R and	V_{GS} required for a current mirror $({}^W/_L)_2$	$\frac{2}{(W_{/L})_{1}} = 5,$
	$(\mu_n C_{ox} \frac{W}{L}) = 2mA/V^2$, Vth=1V. Refe		(02)
3C.	Determine the overall small signal the small signal model for the same	gain for the cascaded MOS amplifier shown in I e. Assume Vth=0.4V	Fig 3C. Draw (02)
4A.	Draw the circuit of a RC coupled a importance of all the resistors and	amplifier and its typical frequency response. capacitors.	Explain the (07)
4B.	State and Prove Millers theorem.		(03)
5A.	Classify the Power Amplifiers base	d on operating point	(02)
5B.		oupled class A power Amplifier and derive the	
5C.	for conversion efficiency, hence de Write a note on Differential Amplif	termine the maximum value.	(04) (04)
FLF 2105 Page 1 of 2			

