Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent Institution of MAHE, Manipal)

III SEMESTER B. TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, DECEMBER 2018

SUBJECT: ANALOG ELECTRONIC CIRCUITS [ELE 2105]

REVISED CREDIT SYSTEM

Tim	e: 3 Hours	Date: 01, December 2018	Max. Marks: 50
Instructions to Candidates:			
	 Answer ALL the question 	15.	
	 Missing data may be suita 	ably assumed.	
1A.	Determine v_0 for each of the voltage of diode is 0.7V.	network shown in Fig Q1A. 1, if $v_i = 8 \sin \omega t$. As	ssume cut-in (03)
1B.	Consider the Zener voltage re V_z =15.4V. The power rating of Determine (a) the range of did	gulator circuit shown in Fig Q1B. Let $V_I = 60V$, R_i f the diode is 4W and the minimum diode current is ode currents. (b) the range of load resistance.	= 150Ω and to be 15mA. (02)
1C .	For the circuit shown in Fig Q enter the triode region? Given	1C, what is the minimum allowable value of V_{DD} if $\mu_n C_{ox} = 200 \mu A/V^2$, $V_{TH} = 0.4V$. Assume λ =0.	<i>M</i> ₁ must not (02)
1D	Design a clamper circuit using as shown in Fig Q1D.	g Ideal diode to obtain the output waveform for the	e given input (03)
2A.	Design the circuit to obtain a c 'L' is 0.5µm, Width 'W' is 5µm,	current of 100uA. Find R_D , V_D . Assume V_{TH} =0.5, Ch $\mu_n C_{ox} = 300 \mu A/V^2$. Refer Fig Q2A.	annel length (02)
2B.	For the MOSFET circuit shown if $V_{TH} = 0.3V$, $W/L = 20$, $\mu_n C$	th in the Fig Q2B find drain current, V_{DS} , overall small $v_{ox} = 100 \mu A/V^2$.	ll signal gain, (05)
2C.	For the circuit shown ir $10mA$, determine v_0 . Draw the	the Fig Q2C, Assume V_{TH} =0.6V, $g_m = 3r_m$ e small signal model for the same.	nA/V, i _{sig} = (03)
3A.	Determine the overall gain of is 0.2V. Find the output resista	cascaded amplifier circuit shown in Fig Q3A. V_{TH} o ance of the circuit and draw the small signal model	f M1 and M2 . (06)
3B.	The mid-band gain of RC co 100KHz. Find the frequency a the same.	upled amplifier is 31.62277V/V. The band width at which voltage gain is 28dB. Draw the frequency	n is 1KHz to response of (02)
3C.	An amplifier rated at 30W ou required for full power outpu amplifier gain is 45 dB.	tput is connected to 8Ω speaker. Calculate (a) the t if power gain is 20dB. (b) the input voltage for ra	input power ted output if (02)
4A.	Determine (W/L) of the MOS $V_o = 0.9 V$ and $I_{ref} = 90 \mu A$. Ass	FET and resistance R in the circuit shown in Fig Q ume M_1 and M_2 are identical, $\mu_n C_{ox} = 90 \ \mu A/V^2$, V_{TH}	4A such that = 0.6 V. (03)
4B.	From the fundamentals derive amplifier due to coupling capa	e an expression for the lower cut-off frequency of a acitors.	a RC coupled (03)

- **4C.** With a neat circuit and diagram and necessary waveforms, obtain maximum efficiency of
series fed class A power amplifier, hence design the circuit for the following specifications.
 V_{DD} :20V, R_D=16Ω, Q point:0.5A, 10V and maximum conversion efficiency is desired.(04)
- **5A.** What is overdrive voltage? Discuss the importance of this with relevant expressions. *(02)*
- **5B.** Five identical cascaded amplifier have an overall upper 3dB frequency of 200KHz and a lower 3 dB frequency of 120Hz. What are f_L and f_H of each stage? (02)
- **5C.** A MOS differential pair operated at a bias current of 1 mA employs transistors with W/L = 200 and $\mu_n C_{ox} = 0.6 \text{ mA/V}^2$, using $R_D = 5 \text{ k}\Omega$ and $R_{SS} = 25 \text{ k}\Omega$. Find the differential gain, common mode gain and the common mode rejection ratio if the output is taken single-endedly and the circuit is perfectly matched.
- **5D.** Derive an expression for CMRR of a dual input, dual output MOS differential pair. Also discuss the role of Active load in Differential amplifier. Support the explanation with relevant circuit diagrams.

ELE 2105

(02)

(04)