Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent Institution of MAHE, Manipal)

III SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKE UP EXAMINATIONS, DECEMBER 2018

SUBJECT: DIGITAL ELECTRONIC CIRCUITS [ELE 2102]

REVISED CREDIT SYSTEM

Time: 3 Hours			Date: 27, December 2018			Max. Marks: 50	
Instructions to Candidates:							
	✤ Answer ALL the questions.						
	 Missing data may be suitably assumed. 						
1A.	A circuit is to accept two 2 bit binary numbers X_1X_0 and Y_1Y_0 and generate the product						
	as a 4 bit binary number $Z_3Z_2Z_1Z_0$. Implement the circuit using only NAND gates.						(05)
1B.	Using VEM techniques, simplify the following expression						
	$F(A,B,C,D,E) = \sum m(3.11.14.24.28) + d(0.1.2.4.5.7.15.16.17.20,21,26,29,30,31)$ where E is the MEV						(05)
2A.	Implement full subtractor using a) Single dual 4:1 mux						
	b) 3:8 decoder						
	c) 2 half subtractor						(06)
2B.	Design a circuit using 74LS283 that will perform two digit BCD addition, explain the logic used						(04)
3A.	Design a presettable counter which can count the states 9,10 ,11,12,13,14,15 using						
	a) T flip-Flop						
	b) D Flip	-Flop					(04)
3B.	What is Race around condition? Explain, how it can be over come.						(02)
3C.	Using a 4 bit universal shift register (74LS194) design a sequence generator which						
	cycles through the following sequence 0-8-12-6-13-11-7-3-1-0						
4A.	Design and Implement a Moore machine to detect the sequence 1111 using D flip flops.						(03)
4B.	Implement the expression $Y = \overline{(AB) + (CD)}$ using CMOS logic						(04)
4C .	Draw an ASM chart for the given state table.						
		Present state	Input	Next state	Output		
		T1	00	T2	0		
		T1	01	Т3	0		

T1

Т3

0

0

10

11

T1

T1

(03)

5A. Design and Implement a synchronous sequential circuit having the following description. The circuit has a mode control input m.

> a) if m=0 the sequence of the circuit is 3 bit 0-2-4-6-..repeats b) if m=1, the circuit generates 1-3-5-7.....repeats

Implement the circuit using T flip flop.

5B. Draw the state diagram and state table representation of the FSM with the Flip-Flop input equations and output decoder equations

 $D2=(Q1+\overline{Q_2}.)x$ D1 = (Q1 + Q2)x: : Z=Q1Q2 x

Where D1 and D2 are the flip flop inputs, x is the external input Z is the external output, Q1 and Q2 are the flip flop states

(06)