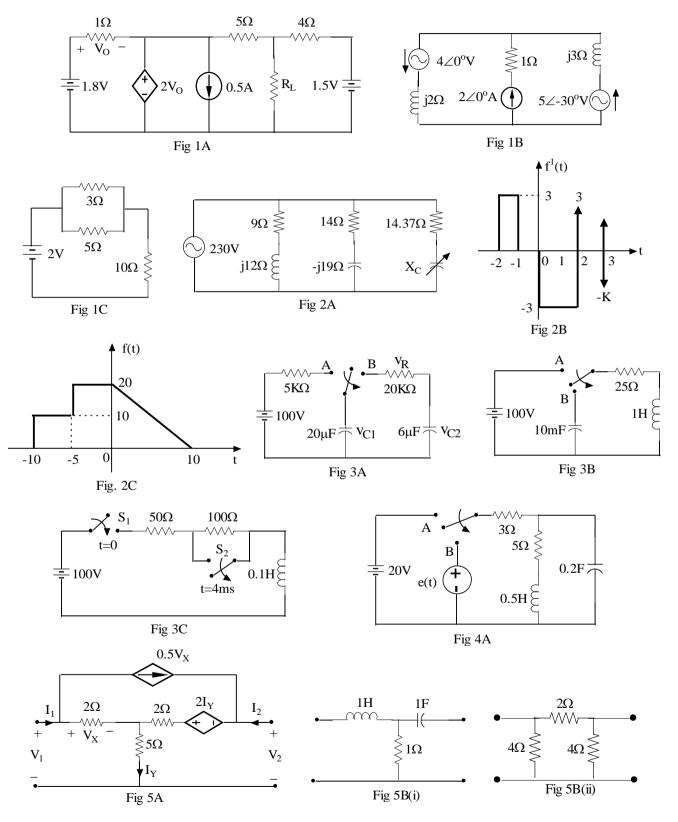
Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent Institution of MAHE, Manipal)

III SEMESTER B.TECH (ELECTRICAL & ELECTRONICS) END SEMESTER EXAMINATIONS, NOVEMBER 2018

SUBJECT: ELECTRICAL CIRCUIT ANALYSIS [ELE 2101]


REVISED CREDIT SYSTEM

		. Marks:	50
Instr	ructions to Candidates:		
	Answer ALL the questions.		
	Missing data may be suitably assumed.		
1A.	For the network shown in Fig 1A, determine the value of R_L for maximum power transforation also, find the value of maximum power transferred.)4)
1B.	In the network of Fig 1B, find the current through j3 Ω inductor using Superposition the)4)
1C.	In the circuit of Fig 1C, find the current through 3 Ω resistor and hence verify Recip theorem.	rocity)2)
2A.	In the circuit of fig 2A, draw the locus of total current if X_C varies from zero to infinity determine (i) currents at UPF (ii) values of X_C at resonance.)4)
2B.	The first derivative of the function $f(t)$ is shown in Fig 2B. Sketch the function $f(t)$ determine the value of K such that $\int_{-\infty}^{+\infty} f(t)dt = 0$.)3)
2C.	Resolve the waveform given in Fig 2C into its even and odd components.	(0)3)
3A.	In the circuit of Fig 3A, switch is moved from position A to B at t = 0. $v_{C1}(0^+), v_{C2}(0^+)$ and $v_R(0^+)$.)2)
3B.	In the network of Fig 3B, the switch is moved from position A to B at t = 0 after attaining state in position A. Find an expression for the voltage across the capacitor for t > 0 usin domain analysis.	g time)4)
3C.	In the network of Fig 3C, switch S_1 is closed at $t = 0$ and S_2 is opened at $t = 4$ m-sec. Obtae expression for the current through the inductor for $t > 4$ m-sec using time domain analogous constants.)4)
4A.	In the network of Fig 4A, switch was in position A for a long time. At t = 0, switch is more position B. Draw the transformed network and hence write the mesh equations. Given $e(t) = e^{-t}Sin10t$.)4)
4B.	A series RL circuit with R = 3 Ω and L = 1 H is excited by a voltage v(t) = 2e ^{-4t} u(t). Dete the expression for current through the inductor for t > 0 using Laplace transform techn	rmine)4))2)
4C.	The current response of a network is given by		-
	$I(s) = \frac{10(s^2 + 3s + 2)}{(s+3)(s^2 + 2s + 5)}$		
	the expression for current through the inductor for t > 0 using Laplace transform techn The current response of a network is given by	rmine	

Determine i(t) using pole-zero diagram method.

(04)

- **5A.** For the network shown in Fig 5A, determine the hybrid parameters.
- 5B. The networks shown in Fig 5B(i) and 5B(ii) are connected in parallel. Determine the overall Y parameters. (04)
- **5C.** A two port network is defined by the parameters: $Y_{21} = 6$, $Y_{22} = 8$, $h_{11} = 5$, $h_{12} = 2$. Find the T parameters. (02)

(04)