Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent Institution of MAHE, Manipal)

III SEMESTER B. TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, NOVEMBER 2018

SUBJECT: ELECTRICAL MACHINERY-1 [ELE 2103]

REVISED CREDIT SYSTEM

Time	e: 3 Hours D	ate: 27, November 2018	Max. Marks:	50
Instr	uctions to Candidates:			
	✤ Answer ALL the questions.			
	 Missing data may be suitably 	<i>v</i> assumed.		
	 Use of graph sheet is permitted 	ted.		
1A.	In A 10 kVA 200/400V, 50Hz s 0.023 sin ω t. Calculate the ind primary and secondary windir	single phase transformer, core flux can be ex luced EMF/turn. Also calculate the number ngs.	xpressed as of turns in (0 4	12)
1B.	A 200 kVA transformer has an occurs at 80% of full load, calc of 0.8 at all loads.	efficiency of 98% at full load. If the maximum ulate the efficiency at half load. Assume a po	n efficiency ower factor (0)4)
1C.	A 100 kVA, 11,000/220 V sing results: OC test: 220 V, 45 A, 2 kW SC test: 500 V, 9.09 A, 3 kW Develop the approximate equi	gle phase transformer when tested gave th valent circuit of the transformer as referred	e following d to the HV	
2.A.	side.	winding transformer is connected as auto t	(0 ransformer	'4)
	with additive polarity to 1 autotransformer.	1.5 kV supply. Calculate the KVA rati	ng of the (0	12)
2B.	With help of phasor diagrams, 2 single phase transformers ar arrangement.	prove that the no-load secondary terminal e at right angles to each other when connec	voltages of ted in Scott)4)
2C.	Write technical note on (a) Inru induction motors	ush current in transformers (b) Crawling in t	hree phase (0	-) (4)
3A.	Explain how the double cage in compared with the convention	nduction motor is able to develop better star al squirrel-cage induction motor.	ting torque (0)3)
3B.	A 3 phase, 400 V, 6-pole, 50 Hz at 985 rpm. The stator losses Calculate:	induction motor develops mechanical power are equal to 1800 W. Neglect the mechan	er of 20 kW ical losses.	
	i) The rotor copper loss &	rotor frequency		
	ii) The total input power.		(0))3)

3C. A 4-pole, 50 Hz, 3-phase induction motor, with star connected rotor, has a rotor resistance of 4.5 Ω /phase and a standstill leakage reactance of 8.5 Ω /phase. With no external resistance in the rotor circuit, the starting torque of the motor is 85 N-m. If 3 Ω resistance were added in each rotor phase, find the following.

- i) The starting torque.
- ii) The torque at a slip of 3 %.
- (04)

4A.	Discuss the variable frequency control strategies for the speed control of 3-phase induction motor.	(02)
4B.	With necessary phasor diagram, explain how a capacitor can help in starting of a single-phase induction motor.	(03)

4C. A 3-phase, 400 V, 50 Hz, star-connected induction motor gave the following test results (line values):

No load test: 400 V, 10 A, 1.4 kW

Blocked rotor test: 150 V, 40 A, 4.2 kW

Construct the circle diagram to obtain the efficiency and speed of the motor when it draws 35 A.

Scale: 1 cm=5 A. Assume rotor copper losses to be same as stator copper losses. (05)

- 5A. Develop a single layer wave winding table for the stator winding of a three phase AC machine with 36 slots and 4 poles. Assume RBY sequence. (04)
 5B. Explain the process of commutation in DC machines using relevant diagrams. What are the factors affecting commutation? (04)
- **5C.** What is the main function of compensating winding in DC generator? Where is it placed? **(02)**