Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent Institution of MAHE, Manipal)

III SEMESTER B. TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKE-UP EXAMINATIONS, DECEMBER 2018

SUBJECT: ELECTRICAL MACHINERY-1 [ELE 2103]

REVISED CREDIT SYSTEM

Time: 3 Hours				Date:29 [Date:29 December 2018		Max. Marks: 50			
Instructions to Candidates:										
	*	Answe	r ALL the questi	ons.						
	*	Missin	g data may be su	itably assumed						
1A.	Test	Test results of a single phase 50 kVA, 2200/110 V, 50 Hz transformer is given.								
	OC Test (LV side): 110 V, 10 A, 400 W.									
	SC T	SC Test (HV side): 90 V, 22.73 A, 808W.								
	Obta	ain the a	approximate eq	uivalent circu	it referred to the high voltage side.	,	(05)			
1B.	Draw the phasor diagram representing voltage and current in the primary and secondary side of a single phase transformer with the lagging load.						(03)			
1C	Explain why the tap changers are normally connected on HV side of a transformer.						(02)			
2A.	A 60 kVA, 11.5/2.3 kV, 50 Hz, two winding transformer is to be employed as an autotransformer with voltage ratio 13.8/11.5 kV. When tested as a two winding transformer at rated load, at 0.85 pf lagging, its efficiency was 98 %. Find the full load efficiency of the autotransformer supplying upf load.						(04)			
2B.	Find the all-day efficiency of a 50 kVA distribution transformer with a core loss of 400 W and full load copper loss of 808 W.									
	During the whole day the transformer is loaded as follows:									
			12 Hours	20 kW	@ 0.6 pf lagging					
			8 Hours	40 kW	@ 0.8 pf lagging					
			4 Hours	48 kW	@ 0.95 pf lagging		(04)			
2C.	Exp	ain the	torque slip cha	racteristics of	the single phase induction motor.		(02)			
3A.	A 3¢ resis the s (c) p	o, 50 Hz stance i slip ring per pha	four pole, indust Ω and per s 0.1 Ω and per s is 100 V at a s se rotor reacta	iction motor h phase standsti peed of 1460 nce and (d) ro	as a star connected rotor. The perp ill reactance is 2 Ω . If the induced en rpm, determine (a) slip (b) rotor in otor current. Assume the slip ring	phase rotor mf between nduced emf s are short				

(04)

circuited.

3B. Write technical notes on

	(a) Induction generators.	
	(b) Deep bar induction motors	(06)
4A.	A 3 phase, 50Hz, six pole, induction motor develops a shaft power output of 20HP at 3% slip. Calculate (a) Gross power developed and (b) Rotor copper loss, if the rotational losses amount to 1.5HP.	(03)
4B.	Explain the reason for Crawling of induction motor with the help of torque-slip characteristics.	(03)
4C.	Develop a single layer wave winding table for the stator winding of a three phase AC machine with 24 slots and four poles. Assume RYB sequence.	(04)
5A.	A 3φ, 50 Hz, 4 pole, induction motor has a full load slip of 3.5 % Calculate (a) frequency of rotor current at standstill (d) frequency of rotor current at full load.	(02)
5B.	Explain the need of starters in three phase induction motor. With a neat sketch discuss the working of a Star – Delta starter.	(04)
5C.	Derive the emf equation of DC generators. Discuss the effect of armature reaction on the generated voltage.	(04)