Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL INSIII MANIPAL (A constituent unit of MAHE, Manipal)

THIRD SEMESTER B.TECH. (E & C) DEGREE END SEMESTER EXAMINATION DECEMBER 2018/JANUARY 2019 SUBJECT: ANALOG ELECTRONIC CIRCUITS (ECE – 2101)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.
- 1A. Design the circuit of Figure 1A for a voltage gain of 10 with Q_1 operating at the edge of saturation. Calculate the bias current and the value of R_C if $\beta = 100$, $I_S = 5 \times 10^{-16}$ A, and $V_A = \infty$. Calculate the input impedance of the circuit.
- 1B. For the circuit in Figure 1B, write an expression for voltage gain and the I/O impedances. Assume $V_A = \infty$.
- 1C. In the circuit of Fig. Q1(c), $I_1 = 1$ mA, $I_S = 3 \times 10^{-17}$ A. (a) Assuming $V_A = \infty$, determine V_B such that $I_C = 1$ mA. (b) If $V_A = 5V$, determine V_B such that $I_C = 1$ mA for a V_{CE} of 1.5V.

(4+3+3)

- 2A. Design a common source amplifier for a voltage gain of 5 and input impedance of more than 10k Ω . Restrict the power budget within 5mW. Assume $\mu_n C_{ox}=100\mu A/V^2$, $V_{TH}=0.4V$, $\lambda=0$ and $V_{DD}=1.8V$.
- 2B. Consider a NMOS transistor with W=2 μ m, L=0.18 μ m and 0.7V across its gate and source terminals. Determine its all small signal parameters. Assume $\mu_n C_{ox} = 100 \mu A/V^2$, V_{TH}=0.4V, λ =0 and V_{DD}=1.8V.
- 2C. Determine the gain and output impedance for the circuit shown in Figure 2C. Assume $\lambda=0$.

(4+3+3)

- 3A. Compute the poles of the circuit shown in Figure 3A assuming $\lambda = 0$. If both M₁ and M₂ are identical and R_S = 200 Ω , C_{GS} = 250fF, C_{SB}, C_{GD} = 80fF, C_{DB} = 100fF, g_m = (150 Ω)⁻¹, calculate the poles with the aid of Miller's approximation.
- 3B. Assuming $\lambda > 0$ and using Miller's theorem, determine the input and output poles of the stage depicted in Figure 3B.
- 3C. Design the source follower depicted in Figure 3C for a voltage gain of 0.8 and a power budget of 2mW. Assume the output dc level is equal to $V_{DD}/2$ and the input impedance exceeds 10 k Ω .

(4+3+3)

(4+3+3)

- 4A. Find the closed loop gain, I/O impedance of the circuit shown in Figure 4A. Assume $\lambda=0$.
- 4B. For the circuit shown in Figure 4B, identify the sense, return mechanism and polarity of feedback.
- 4C. List the salient features of negative feedback amplifier.

ECE - 2101

- 5A. For the circuit shown in Fig. Q5(a), obtain the expressions for gain and frequency of oscillation. Also, extend the result for Hartley and Colpitt's oscillator.
- 5B. Derive an expression for efficiency of Class A Push Pull power amplifier.
- 5C. Determine the region of operation of M_1 as V_1 goes from V_{DD} to zero for the circuit shown in Fig. Q5(c). Assume $V_{DD} = 2.5$ V and $V_{TH} = -0.5$ V

Figure 5C