Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

THIRD SEMESTER B.TECH. (E & C) DEGREE END SEMESTER EXAMINATION NOVEMBER 2018

SUBJECT: ANALOG ELECTRONIC CIRCUITS (ECE - ECE 2101)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidatesAnswer ALL questions.

- Missing data may be suitably assumed.
- 1A. The CE amplifier circuit of Figure. Q1(a) must be designed for an input impedance >10k Ω and $g_m = 1/(260\Omega)$. If $\beta = 100$, $I_S = 2 \times 10^{-17}$ A, and $V_A = \infty$, determine the minimum allowable values of R₁ and R₂. Check if the circuit can be redesigned for a $g_m = 1/(26\Omega)$.
- 1B. For the circuit in Figure. Q1(b), determine the operating point and the small-signal model. Assume $I_S = 8 \times 10^{-16} A$, $\beta = 100$, and $V_A = \infty$.
- 1C. For the circuit in Figure. Q1(c), assuming Early effect, write the expression for the voltage gain, input and output impedances.

(4+3+3)

(4+3+3)

- 2A. Determine the voltage gain and I/O impedance for the circuit shown in Figure. Q2(a). Assume $\mu_n C_{ox} = 100 \mu A/V^2$, $V_{TH}=0.4V$, $\lambda=0$ and $V_{DD} = 1.8V$.
- 2B. Determine the gain and output impedance for the circuit shown in Figure. Q2(b). Assume $\lambda > 0$.
- 2C. For the circuit shown in Figure. Q2(c) What is the minimum allowable value of V_{DD} if M_1 must not enter the triode region? Assume $\mu_n C_{ox}=100\mu A/V^2$, $V_{TH}=0.4V$, $\lambda=0$ and $V_{DD}=1.8V$.
- 3A. For the CS stage of Figure. Q3(a) Obtain the expressions for poles of the circuit using Miller's approximation. If $R_S = 200\Omega$, $R_D = 1 k\Omega$, $I_D = 1 mA$, $C_{GS} = 50 fF$, $C_{GD} = 10 fF$, $C_{DB} = 15 fF$, and $V_{GS}-V_{TH} = 200 mV$, using high frequency model of the transistor, calculate the poles.
- 3B. For the circuit shown in Figure. Q3(b) derive the transfer function of the circuit, substitute $s = j\omega$, and obtain an expression for $|V_{out}/V_{in}|$.
- 3C. Derive the expressions for low frequency and high frequency poles of CG stage.

(4+3+3)

- 4A. Find the closed loop gain, I/O impedance of the circuit shown in Figure. Q4(a).
- 4B. Identify the feedback topology in the block diagram shown in Figure. Q4(b). Find its I/O impedance.
- 4C. Show that the negative feedback enhances the bandwidth of an amplifier.

(4+3+3)

- 5A. Explain the working of Ring Oscillator with a neat circuit diagram. Obtain the expressions for gain and frequency of oscillation.
- 5B. Derive an expression for efficiency of Class B push pull power amplifier.

ECE - 2101

$$(4+3+3)$$

