Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

THIRD SEMESTER B.TECH. (E & C) DEGREE END SEMESTER EXAMINATION NOVEMBER 2018

SUBJECT: ELECTROMAGNETIC WAVES (ECE - 2102)

TIME: 3 HOURS

MAX. MARKS: 50

- Instructions to candidatesAnswer ALL questions.
 - Missing data may be suitably assumed.

A Constituent Institution of Manipal University

- 1A. In a nonmagnetic medium ($\mu_r = 1$) the electric field component is $\vec{E} = 4 \sin(2\pi \times 10^7 t 0.8x)\vec{a_z}$ V/m, Determine the total power crossing the surface of area 20 cm² in the $\vec{a_x}$ direction.
- 1B. A uniform plane wave propagating through the medium with loss tangent 0.53, $\varepsilon_r = 8$, $\mu_r = 2$ has $\vec{E} = 0.5e^{-z/3} \sin(10^8 t \beta z) \vec{a}_x$ V/m, determine β and \vec{H} .
- 1C. For a good conducting medium having $\sigma = 58 MS/m$, $\mu_r = 1$ and $\varepsilon_r = 1$ at a frequency of 100 MHz, calculate the intrinsic impedance (η), propagation constant (γ) and skin depth (δ).

(4+3+3)

- 2A. Given $\vec{E} = E_0 \sin(10^6 t \beta z) \overrightarrow{a_x} V/m$ in free space. Determine wavelength, expressions for \vec{D}, \vec{B} and \vec{H} at t = 1µS.
- 2B. (i) Find the distance between two points A (10, 30^0 , 50^0) and B (7, 45^0 , 90^0).
 - (ii) The magnetic flux density is given as $\vec{B} = \frac{4}{\rho} \vec{a_{\phi}}$ T in cylindrical coordinates. Determine the magnetic flux crossing the plane surface defined by $1m < \rho < 2.5m$, 0 < z < 2m and $\phi = \pi/4$.
- 2C. Derive the modified amperes circuit law for a time varying field.

(4+3+3)

- 3A. Write the expressions for incident wave $(\overrightarrow{E_{ls}}, \overrightarrow{H_{ls}})$, reflected wave $(\overrightarrow{E_{rs}}, \overrightarrow{H_{rs}})$, and transmitted wave $(\overrightarrow{E_{ts}}, \overrightarrow{H_{ts}})$, for a uniform plane wave propagating along positive z direction and incident normally at the boundary z = 0 between two perfect dielectrics. Assume that $\overrightarrow{E_{ls}}$, $\overrightarrow{E_{rs}}$ and $\overrightarrow{E_{ts}}$ have polarized along $\overrightarrow{a_x}$ direction and medium 1 (z < 0), medium 2 (z > 0) are characterised by (ε_1, μ_0) and (ε_2, μ_0) respectively.
- 3B. Use Ampere's circuital law to find the magnetic field intensity \vec{H} at $\rho < a$ and at $a < \rho < b$ for a coaxial cable of length *l* consisting of two concentric cylinders of radius *a* and *b* separated by free space. Assume current I is flowing in $\vec{a_z}$ direction in inner conductor and $-\vec{a_z}$ direction in outer conductor.

3C. Derive the expression for total internal reflection.

(4+3+3)

- 4A. The magnetic flux density in free space is given as $\vec{B} = 0.4 \vec{a_x} + 0.2 \vec{a_y} 0.3 \vec{a_z}$ T. A rectangular loop carrying current of 20 mA in counter clock direction lies in z = 0 plane and is bounded by x=1m, x=3m, y=2m and y=5m. Find the force acting on each segment and hence the total torque acting on the loop.
- ⁴B. If magnetic vector potential is $\vec{A} = -\left(\frac{\rho^2}{4}\right)\vec{a_z}$ A/m, determine the total flux crossing the surface $\varphi = \pi/2$, $1m \le \rho \le 2m$, $0 \le z \le 5m$.
- 4C. A circular disk of radius *d* is uniformly charged with surface charge density of $\rho_s C/m^2$. The disk lies on the z = 0 plane with its axis along the *z* axis. Determine the expression for electric field intensity \vec{E} at point (0, 0, h).

(4+3+3)

- 5A. Derive the expression for reflection and transmission coefficient for a uniform plane wave at oblique incidence with \vec{E} parallel to the plane of incidence.
- 5B. Given that $\vec{H}_1 = -2\vec{a}_x + 6\vec{a}_y + 4\vec{a}_z A/m$ in region 1 (z > 0) where $\mu_1 = 5\mu_0$. If the interface carries current $\vec{K} = 80 \overrightarrow{a_x} A/m$ on the surface z = 0. Determine \vec{H}_2 and \vec{B}_2 in region 2 (z < 0) filled with $\mu_2 = 3\mu_0$.
- 5C. Light is incident from air to glass at Brewster angle. Refractive index of glass is 1.45. Determine the incident and transmitted angles.

$$(4+3+3)$$