	7		1 -				
D N/-)	1				
Reg. No.]	Ì					
	H	ŧ	1				

III SEMESTER B.TECH. (INFORMATION TECHNOLOGY) **MAKE UP EXAMINATIONS, DECEMBER 2018**

SUBJECT: DIGITAL SYSTEMS [ICT 2102]

REVISED CREDIT SYSTEM (24/12/2018)

Time: 3 Hours MAX, MARKS: 50

Instructions to Candidates:

- Answer ALL the questions.
- Missing data, if any, may be suitably assumed.

1A.	Design a code converter to convert a decimal digit represented in 8 4 -2 -1 to a decimal digit represented in Excess - 3 code using NAND gates only.	5
1B.	What is a race around condition? How is it overcome using Master-Slave configuration?	3
1C.	Draw the sequential circuit for MOD – 6 Johnson counter and show that each state can be decoded using 2 – input AND gates ONLY.	2
2A.	Simplify the Boolean function $F(A, B, C, D) = \prod M(0,1,6,7,9,14,15) \bullet \prod \phi(5,13)$	
,	using Quine McCluskey method and draw the logic circuit using NOR gates ONLY.	5
2B.	An asynchronous circuit divides an input square wave by a factor of 14 and produces an output waveform with 50% duty cycle. Give the circuit realization using negative edge triggered JK flip flops and external gates.	
		3
2C.	Using Mealy model, write the state diagram for detecting the binary sequence 1101 in the input binary steam. Overlapping of sequence is allowed.	2
3A.	Design a 4-bit binary Carry Look Ahead adder circuit. Discuss its merits over a 4-bit binary ripple carry adder.	5
3B.	Design SR flip flop using NAND latch and external gates.	3
3C.	Design a 2-digit decimal down counter using 74193 ICs and external gates.	2
IC	Page 1 of 2	

Page 1 of 2

Design a synchronous counter to count the sequence $0 \rightarrow 1 \rightarrow 4 \rightarrow 6 \rightarrow 0$ when 4A. external control input X is LOW and $6 \rightarrow 4 \rightarrow 1 \rightarrow 0 \rightarrow 6$ when control input X is HIGH. Use T - flip flops for the design with minimal external gates. Undefined states should lead to state 6 during the next clock. 5 4B. Design a 4 – bit magnitude comparator using 7483 IC and external NOR gates only. 3 Design a full adder using 74138 IC and minimum external gates. 4C. 2 With the help of neat diagrams, explain three different types of programmable logic 5A. devices. Also, implement the following logic functions using suitable PLA. $f_1 = \sum m(0,3,4,7)$ and $f_2 = \prod M(2,4,5)$ 5 Design a $2 - bit \times 2 - bit$ binary multiplier using 74151 ICs and external gates. 5B. 3 5C. Draw the logic circuit of 2-bit presettable asynchronous counter using D flip flops 2 and external logic gates.

ICT 2102

Page 2 of 2