Reg. No.

THIRD SEMESTER B. TECH. (INSTRUMENTATION AND CONTROL ENGG.) END SEMESTER DEGREE EXAMINATIONS, DECEMBER - 2018 SUBJECT: ELECTRICAL CIRCUIT ANALYSIS [ICE 2101]

	TIME: 3 HOURSMAX. MARKS: 50	
	 Instructions to candidates Answer ALL questions. Missing data may be suitably assumed. 	
1A	Determine the mesh currents for the circuit shown in Fig. Q1A.	4M
1B	Using Superposition Theorem, determine the value of v_x in the circuit shown in Fig. Q1B	3M
1C	For the circuit shown in Fig. Q1C, find the power dissipated in 10Ω using Thevenin's theorem	3M
2A	Find complementary function, particular solution and the total solution for the current shown in Fig. Q2A	4M
2B	Determine $v(0+)$, $\frac{dv(0+)}{dt}$ and $\frac{d^2v(0+)}{dt^2}$ for the circuit shown in Fig. Q2B	3M
2C	For the circuit shown in Fig. Q2C, determine the value for resonance frequency.	3M
3A	For the RC circuit given in Fig. Q3A, find the values of $v_c(t)$ and $v_o(t)$ at (i) $t=0^-$ (ii) $t=0^+$	3M
3B	For the circuit shown in Fig. Q3B, find the expression for $v(t)$ after t=0 ⁺ .	2M
3C	Express the waveform shown in Fig. Q3C in terms of basic signals.	2M
3D	For the circuit shown in Fig. Q3D, find the expression for $i(t)$ after $t \ge 0^+$.	3M
4A	Use Laplace transform method to find the expressions for $i_1(t)$ and $i_2(t)$ shown in Fig. Q4A	5M
4B	Find the h-parameters of the circuit shown in Fig. Q4B.	3M
4C	Obtain impedance parameters in terms of admittance parameters	2M
5A	Obtain Z-parameters for the circuit shown in Fig. Q5A	5M
5B	Draw the graph for the circuit shown in Fig. Q5B. Also, construct the cut-set matrix and determine the node voltages.	5M

