Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

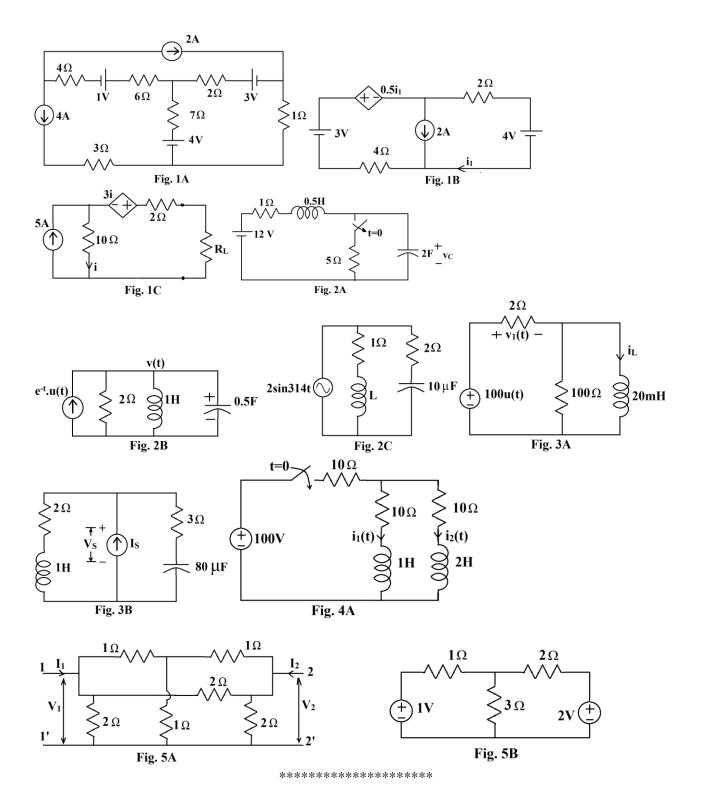
THIRD SEMESTER B. TECH. (INSTRUMENTATION AND CONTROL ENGG.) END SEMESTER DEGREE EXAMINATIONS, NOVEMBER - 2018 SUBJECT: ELECTRICAL CIRCUIT ANALYSIS [ICE 2101]

TIME: 3 HOURS		MAX. MARKS: 50
Instructions to candidates:	(i) Answer ALL questions.	
	(ii) Missing data may be suitably assumed.	

- 1A For the circuit shown in Fig. 1A, determine the loop currents and also the power supplied by the 4M 2A source
- 1B Determine the current i_1 in the circuit shown in Fig. 1B.
- 1C For the circuit shown in Fig. 1C, find the value of R_L for maximum power to the load. Also, 3M calculate the maximum power delivered to the load and maximum power transferred from the source.
- 2A In the circuit shown in Fig. 2A, the switch is opened at t=0, a steady state having previously 4M been attained. Find the complementary function, particular solution and the total solution for v_C(t).

2B Determine
$$v(0+)$$
, $\frac{dv(0+)}{dt}$ and $\frac{d^2v(0+)}{dt^2}$ for the circuit shown in Fig. 2B. 3M

- 2C For the circuit shown in Fig. 2C, determine the value for inductance 'L' at resonance condition. 3M
- 3A With reference to the circuit shown in Fig. 3A, obtain an algebraic expression fot $i_L(t)$ and $v_1(t)$ 3M for time t ≥ 0 .
- 3B The current source in the circuit of Fig. 3B suddenly increases from 15A to 22A at t=0. Find 2M the voltage Vs at (i) t = 0- (ii) t = 0+ (iii) t = ∞ +
- 3C Sketch the waveform for the following function: f(t) = 3u(t) - r(t) + r(t-1) - 5u(t-3) + r(t-3) - r(t-4) + 2u(t-6)3M
- 3D Given that x(t) = 3u(t-1) 2u(t-3) and h(t) = 2u(t) 2u(t-2), find y(t) = x(t) * h(t) 2M using Laplace transform.
- 4A Use Laplace transform to find the expressions for $i_1(t)$ and $i_2(t)$ shown in Fig. 4A. 5M
- 4B It is found that the Z-matrix for a given two-port network is as follows: 3M


$$Z = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

If a voltage source (V_S) of 1V with an internal resistance $R_S=1k\Omega$ is connected across the input port, while a load resistance $R_L = 1k\Omega$ is connected across the output port, determine the

3M

voltage gain $\frac{V_o}{V_s}$.

- 4C Obtain the short-circuit admittance parameters in terms of open-circuit impedance parameters. 2M
- 5A Obtain the Y-parameters for the circuit shown in Fig. 5A.
- 5B For the circuit shown in Fig. 5B, draw the graph as well as a tree which consists of the 3Ω . 5M Construct the tie-set matrix and find the branch currents and voltages.

5M