Reg. No.											
----------	--	--	--	--	--	--	--	--	--	--	--

III SEMESTER B.TECH. (ECE/EEE/ICE/BME)

END SEMESTER MAKE-UP EXAMINATIONS, December 2018

SUBJECT: ENGINEERING MATHEMATICS-III [MAT 2102]

REVISED CREDIT SYSTEM

Time: 3 Hours

Date: 24-12-2018

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

1A.	Obtain the Fourier series for the function $f(x) = \begin{cases} 1 + \frac{4x}{3}, & -\frac{3}{2} < x < 0\\ 1 - \frac{4x}{3}, & 0 < x < \frac{3}{2} \end{cases}$ and $f(x+3) = f(x)$ for all x and hence deduce the value of $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$	4
1 B .	Find the helf range Fourier assing series of $f(x) = f(x) = 0$ as $f(x) = 0$	
1C.	Find $F_{c}\left\{e^{-ax}\right\}$ and hence evaluate $F_{c}\left(\frac{1}{1+x^{2}}\right)$	
2A.	Find the Fourier transform of $f(x) = \begin{cases} 1 - x , x \le 1\\ 0, x > 1 \end{cases}$. Hence evaluate $\int_{0}^{\infty} \left(\frac{\sin x}{x}\right)^{2} dx$	
2B.	If $f(z) = u + iv$ is an analytic function of z then prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$	
2C.	Find the analytic function $f(z) = u + iv$ if $u = \frac{2\cos x \cdot \cosh 2y}{\cos 2x + \cosh 2y}$	
3 A.	. Find all possible expansion of $\frac{z^2 - 1}{z^2 + 5z + 6}$ about $z = 1$	
3B.	Evaluate $\oint_C \frac{z^3}{(z-1)^2 (z^2-5z+6)} dz$ where $C: z = \frac{5}{2}$	3

|--|

	MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)	
3C.	Evaluate $\oint_c (x^2 - 2xy) dx + (x^2y + 3) dy$ around the boundary of the region defined by $y^2 = 8x$ and $x = 2$.	3
4A.	Prove that $\vec{F} = (2xy + z^3)\hat{i} + x^2\hat{j} + 3xz^2\hat{k}$ is a conservative force field. Find the scalar potential for \vec{F} and the work done in moving an object in this field from (1,-2,1) to (3,1,4).	4
4B.	Find the value of a, b, c so that the directional derivative of $\phi = axy^2 + byz + cz^2x^3$ has a maximum of magnitude 64 in the direction of z-axis.	3
4C.	If $\vec{r} = xi + yj + zk$ and $r = \vec{r} $, prove that for differentiable function $f(r)$ show that $\nabla^2 f(r) = \frac{d^2 f}{dr^2} + \frac{2}{r} \frac{df}{dr}$ and hence find $f(r)$ such that $\nabla^2 f(r) = 0$.	3
5A.	Verify divergence theorem for $\iint_{S} \vec{F} \cdot n ds$ where $\vec{F} = 2xyi + yz^2j + xzk$ and S is surface of the parallelepiped bounded by $x = 0$, $y = 0$, $z = 0$, $x = 2$, $y = 1$ and $z = 3$.	4
5B.	Solve: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x \partial y} - 2\frac{\partial^2 u}{\partial y^2} = 0$ using the transformations $v = x + y, z = 2x - y$	3
5C.	Under suitable assumptions derive one dimensional wave equation.	3