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1A. 

Obtain the Fourier series for the function 
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1B. Find the half range Fourier cosine series of ( ) ( ), 0f x x x x     . 3 
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2A. Find the Fourier transform of  
1 , 1

0, 1

x x
f x

x

  
 


. Hence evaluate 

2

0

sin
 

x
dx

x


 
 
 
  4 

2B. 

If  f(z) = u + iv is an analytic function of z then prove that 
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2C. Find the analytic function f(z) = u + iv if  
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3A.  Find all possible expansion of 
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3B. Evaluate 
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Instructions to Candidates: 

 Answer ALL the questions. 
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3C. 

Evaluate    2 22 3
C

x xy dx x y dy    around the boundary of the region defined by 

y2 = 8x and x = 2. 
3 

4A. 

Prove that  3 2 2 ˆˆ ˆ2 3F xy z i x j xz k     is a conservative force field. Find the scalar 

potential for F and the work done in moving an object in this field from (1,-2,1) 

to  3,1, 4 . 

4 

4B. 

Find the value of a, b, c so that the directional derivative of  

  φ = axy2+byz+cz2x3 has a maximum of magnitude 64 in the direction of z-axis. 
3 

4C. 

 If  r xi yj zk and r= |r|   ,  prove that for differentiable function f(r) 

   show that  
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2  and hence  find f(r) such that 2f(r)=0. 
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5A. 

Verify divergence theorem for  

S

F. n ds  where  2F 2xyi yz j xzk    and S is the 

surface of the parallelepiped bounded by x = 0, y = 0, z = 0, x = 2, y = 1 and  

z = 3. 
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5B. 
Solve:  
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5C. Under suitable assumptions derive one dimensional wave equation. 3 

 

 


