Reg. No.

 MANIPAL INSTITUTE OF TECHNOLOGY

 MANIPAL

 (A constituent unit of MAHE, Manipal)

III SEMESTER B.TECH. Print and Media Technology END SEMESTER MAKEUP EXAMINATIONS, December, 2018 SUBJECT: ENGINEERING MATHEMATICS III [MAT 2106] REVISED CREDIT SYSTEM (27/12/2018)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions. Missing data may be suitably assumed.

1A.	If $\overrightarrow{F} = (x + 2)$ conservative ve				-	2 <i>z</i>) <i>k</i> , prov	ve that \overrightarrow{F} is	a 4
	Calculate mean deviation about median and also coefficient of dispersion.							
1B.	Class Interval	0-10	10-20	20-30	30-40	40-50	50-60	3
	Frequency	2	10	20	15	10	3	
1C.	Find Fourier co	er cosine series for $f(x) = x(\pi - x); 0 < x < \pi$. 3						
2A.	Derive D'Alemberts solution of wave equation.							4
	Find standard deviation and coefficient of variation.							
2B.	Class Interval	25-34	35-44	45-54	55-64	65-74	75-84	3
	Frequency	4	20	38	24	10	4	
2C.	Find ∇ . ($ r ^3 \bar{r}$	· [·]).						3
	An incomplete frequency distribution for the weights of 120 boys is given below.							
	Weight(in kgs) 30-4	0 40-5	50 50-6	0 60-7) 70-80		
3A.	No. of boys	12	-	- 35		1	1	4
	Find the missin	g frequen	cies given	that the mo	ode is 51.25	5 and $N =$	120.	

Reg.	No.
------	-----

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

3B.	Find Fourier series expansion of $f(x)$ if $f(x) = \frac{\pi - x}{2}$, in $(-\pi, \pi)$.										
3C.	Find correlation coefficient for the following data;										
	x	164176		178	184	175	167	173	180		
	У	158	164	165	171	163	156	163	169		
4A.	Evaluate $\oiint_S F.n ds$ where $F = \left(2xy + \frac{x^2}{2}\right)i + y^2j - xzk$ and S is the surface bounded by the cylinder $x^2 + y^2 = 4, x = 0, y = 0, z = 0$ and $z = 3$.										
	Fit a straight line of the form $y = a + bx$ for the following data;										
4B.	x	1	2 3	4		5	6	7	8		
	У	2	5 9	12	2	15	17	18	20		
4C.			ethod of ind Pearson's					0, v = x, z	z = x + y .		
5A.	Class	;	100-104	104-10		3-112	112-116	116-120	120-124	4	
	<u></u>	uency	6	14	18		20	10	2		
5B.	Solve by method of separation of variables $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$ where $u(x, 0) = 4e^{-x}$.										
50.		Verify Green's Theorem for $\oint_C (xy + y^2)dx + x^2dy$ and C is the closed curve of the region bounded by $y = x$ and $y = x^2$ from (0,0) to (1,1).									