

Reg.				
No.		W. 3		

DEPARTMENT OF SCIENCES, I SEMESTER M.Sc (CHEMISTRY) END SEMESTER EXAMINATIONS, NOVEMBER 2018

SUBJECT: SPECTROSCOPY-I [CHM - 4107] (REVISED CREDIT SYSTEM-2017)

Time: 3 Hours Date: 27th Nov 2018 MAX. MARKS: 50

Note: (i) Answer ALL questions

- (ii) Draw diagrams, and write equations wherever necessary
- 1A. Discuss the moment of inertia equations involved in linear and asymmetric top molecules in microwave spectroscopy. Comment on their microwave activity
- 1B. State and deduce Beer's law. Calculate the transmittance and molar absorptivity of KMnO₄ solution of 7.25 x 10⁻⁵ M concentration, having an absorbance of 0.355, when measured in a 2.10 cm cell at a wavelength of 525 nm.
- 1C. How do you distinguish between the following by using IR spectroscopy?
 - i) Primary and secondary amines
 - ii) Cis and trans geometric isomers
 - iii) Stretching and bending vibrations
 - iv) Inter and intramolecular hydrogen bonding

2+4+4

2A. Account for the following:

- i) Cyclohexane is UV inactive whereas benzene is UV active
- ii) The $n-\pi^*$ transition moves to shorter wavelength by increasing the polarity of the solvent.
- 2B.i) Describe Quantum theory of Raman Spectroscopy and write any four characteristics of Raman lines
 - ii) The pure rotational (microwave) spectrum of gaseous HCl consists of a series of equally spaced lines separated by 20.80 cm⁻¹. Calculate the internuclear distance of the molecule. The atomic masses are ${}^{1}H = 1.673 \times 10^{-27} \text{ kg}$, ${}^{35}\text{Cl} = 58.06 \times 10^{-27} \text{ kg}$.
- 2C. Compute the λ_{max} for the following compounds based on the Woodward-Fieser rules for diene.

iii)
$$CH_3$$
 iv) CH_3 CH_3 CH_3

3A. Calculate the Raman shift in cm⁻¹ and the wavelength in which anti-Stokes line will appear in the Raman spectrum if a sample was excited by the 430 nm line of mercury and a Raman line was observed at 460 nm.

3B. Give reasons for the following;

1 4 2

- i) The lifetime of a tungsten-halogen lamp is more than double that of an ordinary tungsten lamp.
- ii) All three vibrational modes of H₂O are IR active.

iii) Broad peaks are observed in UV-Visible spectrum.

- iv) Accuracy and resolution is more in FTIR instrument than that of dispersive instruments.
- 3C. Write a note on Nebulization of the liquid sample carried out in Atomic Absorption Spectroscopy. Describe the functions of hollow cathode lamp, chopper and monochromator.

2+4+4

- 4A. Mention the various energy levels possessed by organic molecules and write the interaction of Radiofrequency and IR regions of the electromagnetic spectrum with these molecules.
- 4B. Explain the procedure for the quantitative determination of cadmium present in a sample of water through Atomic Absorption Spectroscopy. Explain the spectral and ionization interference observed in this technique.

4C. Distinguish the symmetry element from a symmetry operation. Mention all the symmetry operations that can be carried on BF₃, benzene and NH₃ molecules.

2+4+4

5A. Explain with example the identification of molecules possessing permanent dipole moment based on the symmetry aspects of a molecule.

5B. Explain the factors responsible for the width and intensity of spectral lines

5C. i) What is a point group? Mention the special point groups and dihedral point groups.

ii) Identify the point groups for the following molecules.

a) PCl₃

b) Planar trans H₂O₂

2+4+4
