

Reg.					
No.					

DEPARTMENT OF SCIENCES, III SEMESTER M.Sc (Physis) END SEMESTER EXAMINATIONS, NOVEMBER 2018

SUBJECT: Thin Films, Processing of Semiconductor Devices, Nano and Magnetic Materials [PHY 5001] (REVISED CREDIT SYSTEM-2017)

Time: 3 Hours	Date: 28:11:2018	MAX. MARKS: 50
Note: (i) Answer <u>ALL</u> que	stions	
(ii) Draw diagrams, a	nd write equations wherever neces	ssary
1. a) Derive the Knudsen cosine	e law for the point source of eva	poration adopted in the thin film
preparation.		[5 marks]
b) Explain the preparation of thi	in films using a chemical vapor depo	sition technique? Mention its merits
and demerits.		[5 marks]
2. a) Describe the thin film growth	h stages with neat diagrams.	[6 marks]
b) Derive an expression for me	easuring thickness of the transparen	nt thin films by interference pattern
obtained using spectrophotome	ter technique.	[4 marks]
3. a) Derive an expression for the	reflectance of single transparent thin	n films deposited on glass substrate
		[6 marks]
b) Show that both negative and	positive values of temperature coef	ficient of resistance are possible for
discontinuous thin metal films.		[4 marks]
4. a) Explain the growth mechanis	sm of the crystals by Czochralski tec	chnique. Mention its advantages and
limitations.		[5 marks]
b) What do you mean plana	ar technology? Describe the prepa	aration of pn junction by plana
technology with neat diagram	s.	[5 marks]
5. a) Discuss the properties of ca	arbon nanotube and its applications	s. [5 marks]
b) Describe the various types	of Giant Magneto-Resistance (GM	IR) with proper examples.
		[5 marks]