

I SEMESTER M.TECH. (AUTOMOBILE ENGINEERING)

END SEMESTER EXAMINATIONS, NOVEMBER/DECEMBER-2018

SUBJECT: COMPUTATIONAL METHODS [MAT 5103] REVISED CREDIT SYSTEM

Time: 3 Hours (01/12/2018) MAX. MARKS: 50

Instructions to Candidates:

- **❖** Answer **ALL** the questions.
- Missing data may be suitably assumed.

1A.	$3x_1-x_2+x_3=-1$ Use SOR method with $\omega=1.25$ to solve $-x_1+3x_2-x_3=7$. $x_1-x_2+3x_3=-7$ Carryout 2 iterations using $X^{(0)}=(0\ 0\ 0)^T$ and accurate to 4 decimal places.	3 Marks
1B.	Solve by Newton-Raphson method: $f(x,y) = x - x^2 - y^2 \text{ and } g(x,y) = y - x^2 + y^2, \text{ starting with initial}$ approximation (0.8, 0.4).	3 Marks
1C.	Solve the system of equations using Thomas method: $\begin{bmatrix} 2.04 & -1 & 0 & 0 \\ -1 & 2.04 & -1 & 0 \\ 0 & -1 & 2.04 & -1 \\ 0 & 0 & -1 & 2.04 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x \end{bmatrix} = \begin{bmatrix} 40.8 \\ 0.8 \\ 0.8 \\ 200.8 \end{bmatrix}$	4 Marks
2A.	Given $y' = y + e^x$, $y(0) = 0$; find $y(0.4)$ with $h = 0.2$ by Euler's modified method.	3 Marks
2B.	Evaluate $y(1.4)$ by Adams-Bashforth method. Given $y' = x^2(1+y)$ and $y(1) = 1$, $y(1.1) = 1.233$, $y(1.2) = 1.548$, $y(1.3) = 1.979$	3 Marks

	Solve the differential equations $y'' = x(y')^2 - y^2$ for $x = 0.2$ using R K method.	4
2C.	Take the initial values are $x = 0$, $y = 1$, $y' = 0$ and $h = 0.2$.	Marks
		3
3A.	Solve $y'' = xy$, $y(0) + y'(0) = 1$, $y(1) = 1$ with $h = 0.5$ by finite difference	
	method.	Marks
	Solve $u_{tt} = u_{xx}$, $0 < x < 2$, $t \ge 0$. Given that $u(0,t) = u(2,t) = 0$,	3
3B.	$u(x,0) = 0$, $u_t(x,0) = 100(2x - x^2)$. Choosing $h = 0.5$, compute u for 4	
	time steps.	Marks
3C.	Solve $u_{xx} + u_{yy} = -81xy$, $0 < x < 1$, $0 < y < 1$.	
	Given that $u(x,0) = u(0,y) = 0$, $u(1,y) = u(x,1) = 100$, take $h = \frac{1}{3}$.	4
	3	Marks
14	Use Galerkin's method to solve the boundary value problem	3
4A.	y'' - y + x = 0, $0 < x < 1$, $y(0) = 0$, $y(1) = 0$.	Marks
	Apply Rayleigh-Ritz method to solve	
4B.	y'' = 3x + 4y, $0 < x < 1$, $y(0) = 0$, $y(1) = 1$. (Use one parameter approximate	3
	solution).	Marks
	,	
4C.	Solve the heat equation $32u_t = u_{xx}, 0 \le x \le 1, t > 0$ by Schmidt method, subject to	
	the conditions $u(0,t) = 0, u(1,t) = t \text{ and } u(x,0) = 0$. Take $\lambda = 1/2, h = 1/4$	
		4
	compute u for 4-time steps.	Marks
5A.	The annual birth and death rates in a country are 11.7% and 10.78% respectively.	
	While the annual immigration and emigration rates are 20.23% and 14.95%.	
	Assuming the rates to be constant over a period of five years. Use differential	
	equation to formulate a model for population change and predict the populations of	3
	the next five years, if the current population is 368250.	Marks
		3
5B.	Discuss the 12 point procedure and classification of mathematical modelling.	Marks
	Solve $u_t = u_{xx} + u_{yy}$ satisfying the initial condition:	
5C.	Solve $u_t = u_{xx} + u_{yy}$ satisfying the initial condition:	
	$u(x, y, 0) = \sin 2\pi x \sin 2\pi y, \ 0 \le x, y \le 1 \text{ and conditions } u(x, y, t) = 0, \ t > 0$	
	on the boundaries. Using ADE method, obtain the solution upto two time levels with	4
	$h = 1/3, \ \alpha = 1/8.$	Marks
1		