Reg.	No.
i togi	

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

I SEMESTER M.TECH. (CHEMICAL & BIOTECHNOLOGY) END SEMESTER EXAMINATIONS, DECEMBER 2018

SUBJECT: MATHEMATICAL & NUMERICAL TECHNIQUES FOR CHEMICAL AND BIOTECHNOLOGY ENGINEERING [CODE- 5102] (REVISED CREDIT SYSTEM)

Time:	3 Hours		•	Date:01·	12-2018	,	MA	AX. MARK	S: 50			
Answer ALL questions												
1A.	Using Jacobi's method find all the eigen values and eigen vectors of t $A = \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}.$											
1B.	Prove that $\int_{-1}^{1} P_m(x) P_n(x) dx = 0, \ m \neq n.$											
1C	Apply Newton-Raphson method to determine a root of the equation $\cos x - xe^x = 0$. Carryout three iterations. (4+3+3)											
2A.	Given $y'' + xy' + y = 0$, $y(0) = 1$, $y'(0) = 0$. Find y and y' at $x = 0.2$ by Runge											
2B.	Kutta method of order 4. The table gives the distance in nautical miles of the visible horizon for the given heights in feet above the earth's surface:											
	X height 100 150 200 250 300 350 400											
	Y distance 10.63 13.03 15.04 16.81 18.42 19.90 21.27											
	Find the values of y when $x = 218$ ft and 410 ft.											

- 2C. Using Chebyshev's polynomials obtain the least square approximation of second degree for $f(x) = x^4$, $x \in [-1,1]$ (4+3+3)
- 3A Find the Fourier transform of $f(x) = \begin{cases} a^2 x^2 \cdot |x| < a \\ 0, & |x| > a \end{cases}$ and hence deduce that

$$\int_{0}^{\infty} \frac{\left(\sin t - t\cos t\right)^2}{t^6} dt = \frac{\pi}{15}$$

3B Solve the following equation by Gauss – Seidal method, carry out four iterations. $-2x_2 - x_3 - x_4 + 10x_1 = 3; -2x_1 - x_3 - x_4 + 10x_2 = 15;$ $-x_1 + 10x_3 - 2x_4 - x_2 = 27; x_1 - 2x_3 + 10x_4 - x_2 = -9$ Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

3C. Solve: $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$, $0 \le x \le 5$, t > 0 with initial conditions $u(x,0) = \begin{cases} 20x, 0 \le x < 1 \\ 5(5-x), 1 \le x \le 5 \end{cases}$ and $\frac{\partial u}{\partial t}(x,0) = 0$ and boundary conditions u(0, t) = u(5, t) = 0. Find u(x, t) for four time steps. Take h = 1. (4+3+3) 4A The deflection of a beam is governed by the equation $\frac{d^4 y}{dx^4} + 81y = \varphi(x)$ where $\varphi(x)$ is given by the table below and the boundary condition y'(0) = y''(1) = y'''(1) = 0, y(0) = 0. Evaluate the deflection at the pivotal points of the beam using three subintervals.

Х	1/3	2/3	1
$\Phi(\mathbf{x})$	81	162	243

4B Find the largest eigen value and eigen vector of the matrix $A = \begin{bmatrix} 4 & 1 & 0 \\ 1 & 20 & 1 \\ 0 & 1 & 4 \end{bmatrix}$. Start

with $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$ and carry out four iterations.

4C Find y at x = 3.75 by fitting a power curve $y = ax^b$ to the following data.

Х	1	2	3	4	5	6	
у	2.98	4.26	5.21	6.10	6.80	7.50	(4+3+3)

5A. Determine the coefficients of the approximate solution $w(x)=a_1(1-x^2)+a_2x^2(1-x^2)$ for the boundary value problem $y''+(1+x^2)y+1=0$, $y(\pm 1)=0$ by using (a) Partition method, (b) Collocation method.

⁵B Using suitable interpolation formula find f (15) from the following table.

		X V	4 48	5 100	7 294	10 900	11 1210	13 2028					
5C.	Usin	ig the Gau	uss-Jordan						$\begin{bmatrix} 1\\1\\1\\2 \end{bmatrix}$	3 4 3 5	3 3 4 3	2 4 5 2	(4+3+3)