

(A constituent unit of MAHE, Manipal)

I SEMESTER M.TECH. (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOVEMBER/DECEMBER 2018

SUBJECT: Advanced Process Dynamics & Control [CHE5104]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

- Instructions to Candidates:
- Answer ALL questions.

• Missing data may be suitably assumed.

1A.	Design a controller incorporating a smith predictor for a time delay process and comments on the controller.	03
1 B	Explain the application of soft sensor in process industry with an example.	03
1C	Explain the different Adaptive control algorithm schemes with block diagram	04
2A	Design a controller for the following plant, $G_p(s) = \frac{1}{(2s+1)(5s+1)}$ Using the direct synthesis	03
	approach, given desired closed loop behavior is $q(s) = \frac{1}{(\tau_r s + 1)}$ with (a) $\tau_r = 5$ and (b) $\tau_r = 1$.	
	Compare the results of (a) with (b) with respect to controller response.	
2B.	Explain the detailed procedure of designing a de-coupler for 2x2 system. You are expected to	04
	show the block diagram of 2x2 system with decoupler.	
2 C	The dynamic model of process is as follows,	03
	$M_1 \frac{d^2 x_1}{dt^2} + D \frac{dx_1}{dt} + K(x_1 - x_2) = 0$ $M_2 \frac{d^2 x_2}{dt^2} + K(x_2 - x_1) = f(t)$ Obtain the state space model of the form, $\dot{x} = Ax(k) + Bu(k); y = Cx(k)$	
3 A	First order system expressed using a difference equation is as follows,	4
	$y(k+) + a_1 y(k-1) = b_1 u(k-1)$	
	Develop its pulse transfer function and Calculate the response $(y(k), k=0,1,2,3,4)$ for unit step	

CHE5104

Page 1 of 2

	input (given a ₁ =-0.368 and b ₁ =1.264) using z-transform	
3 B	The characteristic equation for a certain closed loop digital control system is given as:	4
	$1 + 0.2z^{-1} - 0.2z^{-2} - 0.2z^{-3} + 0.5z^{-4} = 0$	
	Using Jury's method determine the stability of the system.	
3 C	Discuss the different condition for stability of linear discrete time state space model	2
4 A	Consider a moving average (MA) process	4
	$y(k) = H(q)e(k);$ $H(q) = 1 - 1.1q^{-1} + 0.3q^{-2}$	
	Compute $H^{-1}(q)$ as an infinite expansion by long division and develop an auto-regressive model	
	of the form $e(k) = H^{-1}(q)y(k)$. Show that this model facilitates estimation of noise $e(k)$	
	based on current and past measurements of $y(k)$	
4B .	Derive the parameter estimation problem for output error model structure given below. You are expected to demonstrate all the steps.	4
	$\mathbf{x}(k) = \frac{b_1 q^{-1} + b_2 q^{-2}}{1 + a_1 q^{-1} + a_2 q^{-2}} \mathbf{q}^{-3} \mathbf{u}(k)$	
	$\mathbf{y}(k) = \mathbf{x}(k) + \mathbf{v}(k)$	
4 C	Consider fourth order system as	2
	$v(k) = G(q)u(k) = \frac{b_1q^3 + b_2q^2 + b_3q + b_4}{1 + b_1q^2 + b_2q^2 + b_3q + b_4}$	
	$q^4 + a_1 q^3 + a_2 q^2 + a_3 q + a_4$	
	Obtain the state space realization (controllable canonical) of the form	
	$x(k+1) = \Phi x(k) + \Gamma u(k); y(k) = Cx(k) \text{ such that } C[qI - \Phi]^{-1} = G(q)$	
5A	Consider the following system	5
	$x(k+1) = \begin{bmatrix} 0.3 & 0.3 \\ -1/4 & 1.0 \end{bmatrix} x(k) + \begin{bmatrix} -2 \\ 2 \end{bmatrix} u(k) + w(k)$	
	$y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(k) + v(k)$	
	It is desired to develop a state feed feedback control law of the form $u(k) = -Gx(k)$.	
	Find the matrix 'G' such that the poles of $(\Phi - \Gamma K)$ are placed at $\lambda = -0.25 \pm j0.25$	
5B.	Design a Luenberger state estimator by considering the plant as	5
	$x(k+1) = \Phi x(k) + \Gamma u(k); \qquad y(k) = Cx(k)$	
	Develop an error dynamics and discuss the merits and demerits of this observer.	
