Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

I SEMESTER M.TECH. (CHEMICAL & BIOTECHNOLOGY) END SEMESTER MAKE-UP EXAMINATION, January 2019

SUBJECT: MATHEMATICAL & NUMERICAL TECHNIQUES FOR CHEMICAL AND BIOTECHNOLOGY ENGINEERING [CODE- MAT-5102] (REVISED CREDIT SYSTEM)

(REVISED CREDIT SYSTEM)							
	Time: 3 Hours	Time: 2pm to 5pm	MAX. MARKS: 50				
Answer AL	L questions						
1A.	Using Given's method reduce the m	matrix $A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 4 & 2 \\ 3 & 2 & 3 \end{bmatrix}$ to tridi	agonal form.				
1B.	Prove that $\int_{-1}^{1} \frac{T_m(x)T_n(x)}{\sqrt{1-x^2}} dx = \begin{cases} 0 \\ \frac{\pi}{2} \\ \pi, \end{cases}$	$m \neq n$ $m = n \neq 0.$ $m = n = 0$					
1C	Apply Newton-Raphson method t Carryout three iterations.	o determine a root of the eq	uation $x^4 - x - 10 = 0$ (4+3+3)				
2A.	Given $y'' = xy'^2 - y^2$, $y(0) = 1$, $y'($ Kutta method of order 4.	(0) = 0. Find y and y' at x	= 0.2 by Runge				
2B	In the table below the value of v	are consecutive terms of a su	eries of which 23.6 is the sixth				

2B. In the table below the value of y are consecutive terms of a series of which 23.6 is the sixth term. Find the first and tenth terms of the series.

X	3	4	5	6	7	8	9
У	4.8	8.4	14.5	23.6	36.2	52.8	73.9

2C. Construct a least square approximation of second degree for $f(x) = \sin x$, $x \in \left[0, \frac{\pi}{2}\right]$. (4+3+3)

3A Find the Fourier transform of
$$f(x) = \begin{cases} 1 - |x| \cdot |x| < 1 \\ 0, |x| > 1 \end{cases}$$
 and hence deduce that

$$\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{4} dt = \frac{\pi}{3}$$

3B Solve the following equation by Gauss – Seidal method, carry out four iterations. 27x+6y-z=85; x+y+54z=110; 6x+15y+2z=72 Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

3C. Solve:
$$\frac{\partial^2 u}{\partial x^2} = +\frac{\partial^2 u}{\partial y^2} = -10(x^2 + y^2 + 10), \ 0 \le x \le 3, \ 0 \le y \le 3, \ h = 1$$
 (4+3+3)

4A Using the finite difference method find y(0.25), y(0.5) and y(0.75) satisfying the differential equation $\frac{d^2y}{dx^2} + y = x$ subject to the boundary conditions y(0) = 0, y(1) = 2.

4B Find the largest eigen value and eigen vector of the matrix $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$. Start

with $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ and carry out four iterations.

4C Fit a curve $y = ae^{bx}$ to the following data.

Х	0	1	2	3
у	1.05	2.10	3.85	8.30

5A. Determine the coefficients of the approximate solution $w(x)=a_1(1-x^2)+a_2x^2(1-x^2)$ for the boundary value problem $y''+(1+x^2)y+1=0$, $y(\pm 1)=0$ by using Galerkin method.

5B Using suitable interpolation formula find f(2) from the following table.

Х	-4	-1	0	2	5
у	1245	33	5	9	1335

5C Solve the following system of equations using LU decomposition method.

$$3x+2y+7z=4; 2x+3y+z=5; 3x+4y+z=7.$$
 (4+3+3)