MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

I SEMESTER M.TECH. (CEM) END SEMESTER EXAMINATIONS

NOVEMBER 2018

SUBJECT: OPERATIONS RESEARCH AND DECISION THEORY [CIE 5102]

Date of Exam: 22 /11/2018 Time of Exam: 2:00 PM to 5:00 PM Max. Marks: 50

Instructions to Candidates:

✤ Answer ALL the questions & missing data may be suitably assumed

1A.	Briefly explain (i) Decision under risk (ii) Aspiration level principle (iii) coefficient of optimism (iv) Saddle point in Games								CO1
1B.	A company wishes to buy new equipment A or B, both satisfying all the requirements. The project requiring one of these two equipments is expected to last 2 or 3 years. The initial cost of A is ₹ 12 Lakhs and of B is ₹ 9 Lakhs. Operating cost/year of A is estimated at ₹60,000 or ₹80,000 or ₹1, 00,000 while for B it is estimated at ₹ 1, 60,000 or ₹1, 80,000. Which equipment would you select if you are the decision-maker in that company, based on								CO1
2A.	Solve the following LPP using graphical approach Maximize $Z = 5x_1 - 2x_2$ Subject to $x_1 \le 2$ $-x_1 + 2 x_2 \ge 4$ and $x_1, x_2 \ge 0$							(02)	CO2
2B.	Solve the following LPP using Big M method Minimize $Z=10x_1+15x_2+20x_3$ Subject to $2x_1+4x_{2+}6x_3 \ge 24$ $3x_1+9x_{2+}6x_3 \ge 30$ And $x_1, x_2, x_3 \ge 0$								CO2
3A.	Obtain the I minimize th Sources	Description Description Description Description Description Description Sources S_1 S_2 8 S_3 3 S_3 3 S_3 10 S_1 S_2 S_3 S_2 </td <td>CO3</td>							CO3
3B.	Obtain the (u-v) Methor supplied and	optimal solution d. The table show l indicated in bol	to the ws unit	followin transpo	ng Trans rtation o	sportation Proble costs in thousand	em using MODI ls of ₹. IBFS is	(07)	CO3

	Destinations															
				D ₁	D ₂	D ₃	D_4	Sup	olv(unit	s)						
		O ₁			25		23	10	35		<u>.</u>					
	Origins				57	90	150	30								
			O ₂		• 1 0		35	10	45							
		0			210	90	120	180	00							
	I		03		120	40	210	50 60	90							
			Demand(units)		25	40	35	70								
4A.	What is dynamic programming? Mention the application areas of dynamic programming										:	(02)	CO5			
	Solve the following Assignment problem. The pay-off matrix gives the profits in															
	thousands of ₹															
	Г					Bu	ildings									
						1	B ₂	B3		B ₄						
						30 2	224			308						
4D	4B. M Cor Tea		Malawa				10			10.6		100		(08)	(08)	CO4
4D.			istruction	uction CT_2		0	144			198			(00)			
			Techniques		hniques CT:		3 22	0	76	154		242				
					4 16	i0 1	28	112		176						
5.4	List th	ne ass	umptions ma Write the ex-	ade in	Poisso	n-Expor	ential,	Multiple	e Serv	ver Moo	del - Infinit	te	03+01	CO4		
5A.	is idle	ation.	write the ex	spress			nation	or the p	TODAD	inty tha	it the system	.11	=(04)	001		
	The fo	orest d	lepartment p	lans t	o develo	op a PA	RK for	tourism	purp	ose. For	ur locations	5				
	are de	esigna	ted for auto	mobil	e access	S. These	sites a	nd the c	listan	ces (in	kilometers)				
	betwe	en the	em are liste	d in i	the follo	owing ta	able. To	o inflect	t the	least ha	arm on the	9				
	provid	le the	desired acce	nent	ity Dete	ermine h	ow roa	ds shoul	d he l	auways	achieve this	5				
	object	ive. N	Take use of 1	ninim	ium spar	n technic	jue.	45 5110 41	u 00 (
		г						D			*****					
					Park Entra	nce Ea	ater	River Point		unset	Wild Life		07	005		
5B.	5B.				Linua		11	Font	Politi		Area		06	005		
			Park Entrance			18		42	40)	54					
			Water Fall		18			22	30	5	28					
			River Point	Point		22			38	8	12					
		Sunset Poin	nt	40	36		38			37						
		ŀ	Wild Life A	rea	5/	20		12	27	7						
	which the P				54	20		14	12 31							