Reg. No. MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL A Constituent Institution of Manipal University FIRST SEMESTER M. TECH (ENVIRONMENTAL ENGINEERING) MAKE UP SEMESTER EXAMINATIONS, JANAURY 2019

SUBJECT: COMPUTATIONAL METHODS & OPTIMIZATION TECHNIQUES [MAT -5106] REVISED CREDIT SYSTEM (//2019)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL questions.
- ✤ All questions carry equal marks.

1A.	The chances of A, B, C becoming the general manager of a certain company are in the ratio 4:2:3. The probabilities that the bonus scheme will be introduced in the company if A, B, C become general manager are 0.3, 0.7, 0.8 respectively. If the bonus scheme has been introduced, what is the probability that A has been appointed as general manager?	4
1 B .	Solve: $x^2y'' + y' + y = 0$, y (1) = 0, y(2) = 2, h = 0.25.	3
1C.	A and B throw alternatively a pair of fair dice. A wins if he throws sum 6 before B throws a sum 7 and B wins if he throws a sum 7 before A throws a sum 6. If A begins, find his chances of winning.	3
2A.	Using Simplex method, solve the following LPP, Maximize $z = x_1 + x_2$ subject to $x_1 + x_2 \le 8, 2x_1 + x_2 \le 10, x_1, x_2 \ge 0.$	4
2B.	Perform 3 iterations to find the minimum value of the function $f(x) = x^2 - 5x + 2$ in the interval [2, 4] using Golden section method.	3
2C.	In a test on electric light bulbs, it was found that the life time of a particular electric bulb	
	was distributed normally with an average life of 2000 hrs and standard deviation of 60 hrs. If a firm purchases 2500 bulbs find the number of bulbs that are likely to last for i)	3
	more than 2100 hrs (ii) less than 1950 hrs.	

3A.	The Mendelian theory states that the probabilities of classification A, B, C, D are	
	respectively $\frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}$. From a sample of 160 the actual numbers observed	4
	were 86, 35, 26 and 13. Is this data consistent with the theory at 0.01 significance	4
	level ?.	
3B.	Minimize the function $f(x) = x^2 + \frac{54}{x}$ in the interval [0, 5] by the Fibonacci method.	3
3C.	Let x_1, \ldots, x_n denote a random sample from a normal distribution with mean 0 and	
	variance, $\theta . 0 < \theta < \infty$. Show that $\frac{\sum_{i=1}^{n} x_i^2}{n}$ is an unbiased estimator of θ and has	3
	variance $\frac{2\theta^2}{n}$.	
4A.	Solve : $16 u_t = u_{xx}$, $0 < x < 1$, $t > 0$, u(x, 0) = 0, $u(0, t) = 0$, $u(1, t) = 100 t$. Taking $h = 0.25$, compute u for 4 time steps.	4.
4B.	Fit a second degree parabola $y = ax^2 + bx + c$ to the following data.	
	x 0 1 2 3 4	3.
	y 1 1.8 1.3 2.5 6.3	
4C.	If X and Y are two random variables having the joint density function	
	$f(x,y) = \begin{cases} \frac{1}{8}(6-x-y), & 0 \le x < 2, \ 2 \le y < 4\\ 0, & \text{otherwise} \end{cases}$. Find i) $P(X + Y < 3)$ ii) $P(Y > X)$	3
	0, otherwise	
5A.	Using M- method, Maximize $z = x_1 - 2x_2$ subject to	4
	$x_1 + x_2 \ge 2, -x_1 + x_2 \ge 1, x_2 \le 3, x_1, x_2 \ge 0.$	4.
5B.	Perform 2 iterations to find the minimum value of the function	
	$f(x) = 6x + 7.5x^2 + 3x^3 + x^4$ in the interval [-2, 1] using Golden section method.	3
5C.	Find the median and the quartiles for the following data	
	Classes 60-62 63-65 66-68 69 - 71 72-74	
	Frequency 5 18 42 27 8	3.
L		<u> </u>