Reg. No.

FIRST SEMESTER M. TECH (ENVIRONMENTAL ENGINEERING) END SEMESTER

EXAMINATIONS, NOVEMBER 2018

SUBJECT: COMPUTATIONAL METHODS & OPTIMIZATION TECHNIQUES
[MAT -5106]
REVISED CREDIT SYSTEM
(01/12/2018)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL questions.

✤ All questions carry equal marks.

1A.	Find the minimum value of $f(x) = \frac{x}{\log x}$ by taking $x^{(0)} = 2.5$, step size 0.1 using quadratic interpolation method.	4
1B.	Solve: $y'' + x^4 y = 0$, $y(0) = 4$, $y(1) = 1$, $h = 0.25$.	3
1C.	In a normal distribution, 7% of the items are under 35 and 89% are under 63. Find the mean and variance of the distribution.	3
2A.	Using Simplex method, solve the following LPP, Maximize $z = 3x_1 + 4x_2$ subject to $4x_1 + 2x_2 \le 80, 2x_1 + 5x_2 \le 180, x_1, x_2 \ge 0.$	4
2B.	It is suspected that a patient has one of the diseases A_1 , A_2 , A_3 . Suppose that the population percentage suffering from these illness are in the ratio 2:1:1. The patient is given a test which turns out to be positive 25% of the cases of A_1 , 50% of the cases of A_2 and 90% of A_3 . Given that out of three tests taken by the patient two are positive, find the probability for each of the 3 illness.	3
2C.	Suppose that the two-dimensional random variable (X, Y) has pdf given by $f(x, y) = \begin{cases} 2(x + y), & 0 < x < y < 1 \\ 0, & \text{elsewhere} \end{cases}$ then find ρ_{xy} .	3

3A.	The follo	owing	g figur	es sho	w that	the di	istributi	on of	digits i	n num	ber cł	nosen	at random	
	from a te	The following figures show that the distribution of digits in number chosen at random from a telephone directory. Test whether the digits occur equally frequently at 0.05												
	significance level.											4		
	Digit	(0	1	2	3	4	5	6	7	8	9	total	
	Frequen	cy	1026	1107	997	966	1075	933	1107	972	964	853	10000	
3B.	3. Find the real root of the equations $x^2 - y^2 - 1 = 0$ and $x^2 + y^2 - 9 = 0$ near $x_0 = y$ by Newton – Raphson's method. Carry out 2 iterations.											$= y_0 = 2.1,$	2	
													3	
3C.	Let \overline{X} denote the mean of a random sample of size 100 from the distribution $\chi^2(50)$. Compute an approximate value of Pr{49 < \overline{X} < 51}.												3	
4A.	Solve : $u_t = u_{xx}$, $0 < x < 1$, $t > 0$, $u(x, 0) = 100 (x - x^2)$, $u(0, t) = u(1, t) = 0$. Taking $h = 0.25$, compute u for 4 time steps.												4	
4B.	Fit the curve $y = ae^{bx}$ to the following data.													
	X		2	3	4		5	6						3
	У	,	144	172	20)7	249	299)					
4C.	Minimize the function $f(x) = x(x - 4)$ in the interval [1, 3] by the Fibonacci method. Take $n = 3$.												3	
5A.	Using du	al sir	nplex	metho	d, mini	imize	$z = 2x_{z}$	1 + 2x	$x_2 + 4x$	3 subje	ect to			
	$2x_1 + 3$	x ₂ +	- 5x ₃ ≥	<u>2, 3x</u>	$x_1 + x_2$	+ 7x	$_{3} \leq 3, 2$	K₁ + 4	4x ₂ + 6	$\delta x_3 \leq$	5, x ₁ ,	х ₂ , х	$x_3 \ge 0$	4
5 B .	Find the m.g.f of the random variable X which is uniformly distributed over (-a, a).											3		
	Evaluate $E(X^{2n})$.													
5C.	Find the Mean, Median and Mode for the following data													
		C	Class	1	-10	11-20	0 21-3	30 3	1-40	41-50	51-	60		3
		F	Freque	ncy 3		16	26	3	1	16	8			
			1											