

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

I SEMESTER M.TECH. (CSE/CSIS)

END SEMESTER MAKEUP EXAMINATIONS, DECEMBER 2018

SUBJECT: ADVANCED DATABASE SYSTEMS [CSE 5102]

REVISED CREDIT SYSTEM

(24/12/2018)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.
- 1A. Explain two approaches to accessing SQL from a general-purpose programming language.
- **1B.** Write JAVA program that uses the JDBC interface.
- 1C. Let relations r₁(A, B, C) and r₂(C, D, E) have following properties: r₁ has 20,000 tuples, r₂ has 45,000 tuples, 25 tuples of r₁ fit on one block, and 30 tuples of r₂ fit on one block. Estimate in the worst case the number of block transfers and seeks required, using each of the following join strategies for r₁ ⋈ r₂. (i) Nested-loop join (ii) Block nested-loop join
- 2A. Using the required equivalence rule write the equivalence of the following relational algebra expression.

 $\Pi_{name, title} (\sigma_{dept_name} = "Music" \land year = 2009$ $(instructor \bowtie (teaches \bowtie \Pi_{course_id, title}(course))))$

2B. Consider the following *flat_books* relation in the Table 2B below: Table 2B

title	author	pub_name	pub_branch	keyword	
Compilers	Smith	McGraw-Hill	New York	parsing	
Compilers	Jones	McGraw-Hill	New York	parsing	
Compilers	Smith	McGraw-Hill	New York	analysis	
Compilers	Jones	McGraw-Hill	New York	analysis	
Networks	Jones	Oxford	London	Internet	
Networks	Frick	Oxford	London	Internet	
Networks	Jones	Oxford	London	Web	
Networks	Frick	Oxford	London	Web	

Write SQL query to nest the *flat_books* relation on the attribute *keyword*. Also show result of this query.

2C. With neat diagram explain three basic steps in query processing.

4

4

2

5

3

3A.	Write a parallel partitioned join algorithm to compute join of two relations r and s.	3
3B.	Define semijoin of r_1 with r_2 . Let r_1 be a relation with schema R_1 stores at site S_1 . Let r_2 be a relation with schema R_2 stores at site S_2 . Using semijoin strategy, evaluate the expression $r_1 \bowtie r_2$ and obtain the result at S_1 .	4
3C.	Write two-Phase commit protocol.	
4A.	Draw the galaxy schema diagram for the sales data of a company with respect to the four dimensions, namely time, item, branch and location. Schema diagram must have appropriate key and attributes for each dimensions.	4
4B.	Explain five OLAP operations.	3
4C.	Write short notes on XPath and XQuery	3
5A.	Write MapReduce algorithms for selection and projection operations.	4
5B.	With neat diagram explain graph model of NoSQL databases.	3
5C.	Explain CAP theorem.	3
