Reg	Ν	0	
		-	

(A constituent unit of MAHE, Manipal)

I SEMESTER M. TECH (TSES) END SEMESTER MAKE-UP

EXAMINATIONS, DECEMBER 2018

SUBJECT: DESIGN OF THERMAL SYSTEMS [MME 5141]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX.MARKS: 50

Instructions to Candidates:

- Answer ALL questions.
- Missing data may be suitably assumed.
- Use of Thermodynamic data hand book permitted.
- 1A. Explain the different steps involved in the design and optimization procedure of any thermal system

05

- 1B. Convective heat transfer from a spherical reactor of diameter D and temperature T_s to a fluid at temperature T_a with a convective heat transfer coefficient h denoting T_s-T_a as θ , h is given by h = 2 + 0.55 $\theta^{0.27} D^{-1.2}$. Also a constraint arises from strength considerations and is given by $D\theta$ =75. Wishing to minimize the heat transfer from the sphere set up the objective function in terms of D and θ. Using Lagrange method for constrained optimization obtain 05 the values of D, θ , heat transfer rate and Lagrange multiplier
- 2A. Design a simple steam power plant which is capable of developing 20 MW using burning of waste material for heat input and a local river for heat rejection. It is found that saturated temperature as high as 300°C could be achieved by 05 the heat source and temperature in the river is restricted to 30°C. Consider 80% efficiency for the turbine. Also list the assumptions made
- An experimental study is performed in a plastic screw extruder along with a die 2B to determine the relationship between mass flow rate m and the pressure difference P. The relationship for the die is found to be

05

 $m = 0.5P^{0.5}$ and the screw extruder is $P = 2 + 3.5m^{1.4} - 5m^{2.2}$. Simulate the system using Newton Raphson's method assuming initial guess of m = P = 0.25.

3A. Compute the constants in the equation $y = a_0 + a_1 x + a_2 x^2$ to provide a best fit in the sense of least squares for (1, 9.8), (3, 13),(6,9.1) and (8,0.6). Find y when 05 x =7

3B. A power plant system needs machinery for a suitable operation. Two types A and B are available. The applicable costs are given as in the table.

particulars	A (Rs)	B (Rs)
Initial cost	20000	30000
Annual maintenance cost	4000	2000
Refurbishing cost at the end		
of 4 years	3000	0
Annual saving	500	1000
Salvage value	500	3000
Annual tax	1250	1370

Useful life is 8 years for A and 6 years for B. Rate of interest is 9% compounded quarterly. Using annual cost method, determine which is a better acquisition?

05

4A. Total pressure drop from point 1 to point 5 in the multi branch duct system in the figure is to be 500 Pa. Table below presents the costs for various duct sizes in each of the section as a function of the pressure drop in the section. Use dynamic programming to determine the pressure drop in each section resulting in the minimum total cost of the system.

Section	Pressure drop (Pa)	Cost (dollars)
1-2	50	256
	100	222
	150	205
	200	193
2-3	50	210
	100	180
	150	166
	200	157
3-4	50	149
	100	135
	150	125
	200	117
4-5	50	106
	100	93
	150	86
	200	81

05

05

4B. A hydraulic power system must provide 300W of power and cost can be expressed as a function of volume flow rate Q (m³/s)and pressure build up ΔP as cost =1200 $Q^{0.4}\sqrt{10 + (\Delta P \times 10^{-4})}$ dollars. Using geometrical programming find the minimum cost, pressure build up and volume flow rate required?

5A. A food processing firm is planning construction of a plant that could manufacture a combination of three frozen food products, pot pies,TV dinners and pizzas. The investment cost consists of plant costs and machinery costs and the credit rating of the firm will permit loans of \$4.8 million or less for the building construction and\$1.6 million or less for the machinery. The building and machinery costs for each of the proposed products are

Food products	Building cost(\$)	Machinery cost(\$)
Pot pies TV dinners	600,000x ₁ 500,000x ₂	100,000x ₁ 400,000x ₂
Pizzas	400,000x ₃	200,000x ₃

Where x_1 , x_2 and x_3 represent the hourly production rate of pot pies,TV dinners and pizzas respectively in thousands of units. The hourly profit from the manufacture of each of the products in \$ is $25x_1$, $30x_2$ and $40x_3$. Use linear programming method and determine the optimal values of x_1 , x_2 x_3 and the hourly profit.

5B. Fuel consumption F of a vehicle is given in terms of x and y which characterizes the combustion process and drag as $F = 10.5x^{1.5} + 6.2y^{0.7}$ with a constraint from the conservation laws as $x^{1.2}y^2 = 20$. Using hemstitching method solve the above constrained problem and determine the optimum values of x and y. Take initial guess in x as 1.2 and assume uniform step size of 0.3 in y.

05

05