Reg. No.

I SEMESTER M.TECH (TSES) END SEMESTER MAKE UP EXAMINATIONS, DECEMBER 2018

SUBJECT: SOLAR THERMAL ENERGY SYSTEMS [MME 5143]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

05

05

05

05

Instructions to Candidates:

- Answer ALL the questions.
- Missing data may be suitably assumed.
- Use of Heat and mass transfer data book is permitted
- **1A.** Derive an expression for collector efficiency factor in case of in-line version of solar flat plate water heater.
- **1B.** Evacuated tube collector with tank having 125 litres (at 50°C) of water is to be checked for circulation ratio and instantaneous efficiency. Available data are:

Time (h)	10.00	11.00	12.00	1.00
$I_b (W/m^2)$	600	650	700	750
Collector a	rea = 3.	0 m ²		

Initial average temperature of water in the tank = 50° C Final average temperature of water in the tank = 75° C Assume diffused radiation as 15 % of beam radiation. Neglect heat loss from storage tank.

2A. With sketch explain the working of the following solar thermal systems:

- (a) Adsorption and absorption refrigeration
- (b) Fresnel reflector
- **2B.** Calculate H-W-B constants, Critical radiation level and collector efficiency factor for the flat plate collector with following geometry and operating conditions:

Total radiation falling on cover	=	550 W/m ²
Absorptivity-transmissivity produc	:t =	0.85
Top loss coefficient	=	4 W/m ² K
Size of the collector	=	2 m(L) x 1 m(W) x 0.16 m(H)
Thermal conductivity of insulation	= -	0.05 W/mK
Mass flow rate of water	=	35 kg/m²h
Water inlet and outlet temperature	e =	30°C and 38°C
Collector heat removal factor	=	0.85
Overall heat transfer coefficient	=	4.32 W/m ² K
Spacing between cover and plate	=	0.08 m
Side insulation thickness	=	50 % of back insulation

MME 5143

Page 1 of 2

- **3A.** Derive an expression for collector efficiency factor in case of a conventional solar air heater with continuous longitudinal fins.
- 3B. Calculate the monthly average hourly global and diffuse radiation during the month of April on a horizontal surface at New Delhi (28°35' N). Time is 0900 h to 1000 h (LAT). The average number of sunshine hours per day is 8.6. Take a = 0.25, b = 0.57.

The constants in monthly average hourly global radiation are defined as: $a = 0.409 + 0.5016 \sin(\omega_s - 60^\circ)$ and $b = 0.6609 - 0.4767 \sin(\omega_s - 60^\circ)$ Monthly average daily diffused radiation is: $\frac{H_d}{H_g} = 1.411 - 1.696 \left(\frac{H_g}{H_o}\right)$

4A. Discuss the effect of various parameters on performance of Parabolic trough collector.

05

05

05

4B. A flat plate water heater operates at a mean plate temperature of 70°C. Determine the time by which it will reach this temperature if there is no useful heat gain till that time. The following data is given:

Collector length	= 1.6 m	(mC) for plates & tubes	= 4.5 kJ/K
Collector width	= 1.0 m	(mC) for insulation	= 2.0 kJ/K
Overall loss coefficient	= 7.2 W/m ² K	(mC) for glass cover	= 16 kJ/K
Top loss coefficient	$= 6.4 \text{ W/m}^2\text{K}$	Water in collector	= 2.1
Ut ₂	= 22.8 W/m ² K		

Time (am)	Flux (W/m ²)	$(\tau \alpha)_{avg}$	Ta (°C)
6-7	30	0.25	14.0
7-8	175	0.50	15.0
8-9	380	0.70	16.0
9-10	555	0.86	18.0
10-11	700	0.89	20.5

5A. Draw combined H-W-B graph (showing changes in intercept and slope) when conventional air heater is modified with longitudinal fins.

Length of collector	= 2.1 m
Width of collector	= 1.1 m
Length of plate	= 2.0 m
Width of plate	= 1.0 m
Space between plate and bottom plate	= 15 mm
Air flow rate	= 200 kg/h
Fin pitch	= 25 mm
Fin height	= 13 mm
Fin thickness	= 3 mm
Overall heat loss coefficient	$= 7 \text{ W/m}^2\text{K}$
Equivalent radiation heat transfer coefficient	$= 7.57 \text{ W/m}^2\text{K}$
Fin material	= 0.5 % C
Absorptivity-transmissivity product	= 0.85
For plain plate: $Nu = 0.158 \text{ Re}^{0.8}$	
For finned plate: Nu = 0.023 Re ^{0.8} Pr ^{0.4}	

5B. With sketch explain I and H type layout of solar field.

MME 5143

Page 2 of 2

05

05

05