

## I SEMESTER M.TECH (TRIBOLOGY AND MAINTENANCE) END SEMESTER EXAMINATIONS, NOVEMBER 2018

SUBJECT: LUBRICATION ENGINEERING [MME 5163]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

## **Instructions to Candidates:**

- ❖ Answer ALL the questions.
- Missing data may be suitably assumed.

| 1A. | Using the Stribeck curve discuss the following lubrication modes with a neat sketch a)Boundary lubrication b)Hydrodynamic lubrication c) Elasto hydrodynamic lubrication                      | 03 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1B. | Define the following physical properties of mineral oils.  1)Viscosity (2) Viscosity Index (3) Fire point (4) Pour point Explain the significance and importance of each of these properties. | 04 |
| 1C. | With neat sketches explain how hydrodynamic pressure is generated in a converging wedge. What is the significance of cavitation in hydrodynamic bearings                                      | 03 |
| 2A. | Discuss the constant pressure system of Hydrostatic lubrication. How does it differ from the constant flow system.                                                                            | 03 |
| 2B. | Discuss with neat sketches the boundary layer concepts in bearings                                                                                                                            | 03 |
| 2C. | Discuss briefly the long and short bearing solutions for the Reynolds equation. How are real bearings different from the above two models                                                     | 04 |
| 3A. | With a neat sketch show the different regimes of elastohydrodynamic lubrication and explain the significance of each regime.                                                                  | 03 |
| 3B. | Write a note on Hertzian contact stresses. What is their significance in lubrication?                                                                                                         | 03 |
| 3C. | Explain the steps involved in writing a computer code to solve the Reynolds equation for finite bearings                                                                                      | 04 |
| 4A. | Derive an expression for the radial load capacity of rolling element bearings.                                                                                                                | 04 |
| 4B. | What are the different numerical approaches to solving elastohydrodynamic lubrication problems. Explain briefly the multigrid method                                                          | 03 |

MME 5163 Page 1 of 2

- **4C.** What are the different functions of a lubricant? What are solid lubricants?
- **5A.** Explain the following with neat sketches with regard to rolling element bearings. 1) Diametral clearance. 2) Inner and outer race conformities as well as total conformity. 3)Endplay

03

**5B.** Show that the condition for minimum power loss in a circular step thrust externally pressurized fluid film bearing is:-

$$\left(\frac{r_0}{r_i}\right) = \frac{1}{4} \left[\frac{r_0^2}{r_i^2} - 1\right]$$

**5C.** Write a note on performance evaluation of fluid film bearings **03** 

MME 5163 Page 2 of 2