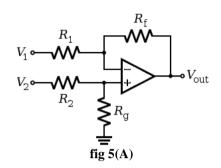


I SEMESTER M.TECH. (INDUSTRIAL AUTOMATION AND ROBOTICS) END SEMESTER EXAMINATIONS, NOV-DEC 2018

SUBJECT: ANALOG AND DIGITAL ELECTRONICS [MTE 5131] 24/11/2018

Time: 3 Hours

MAX. MARKS: 50


Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Data not provided may be suitably assumed

1A.	Compare an ideal OP-AMP with a practical OP-AMP in terms of gain, input impedance & bandwidth, and formulate the overall gain of an inverting amplifier.	03
1B.	Subtract $(6)_{10}$ from $(5)_{10}$ using 2's complement method.	03
1C.	Design a negative edge triggered 4-bit asynchronous up Binary Counter.	04
2A.	Design a 4-bit Binary to BCD code converter.	04
2 B .	Construct a FM demodulator/detector using phase locked loop.	06
3A.	Design a combinational logic circuit for a mobile robot which follows a black line. The robot is embedded with four infrared sensors, were first & fourth sensors are placed to sense outside black line and second & third sensors are placed to detect black line for achieving forward motion. If the condition is not satisfied then the robot should stop.	05
3B.	Discuss the data movement in a 4-bit bidirectional shift register using state timing diagrams. (Take data to be loaded as 1011).	05
4A.	Design the circuits using OP-AMP to perform the following operations: a. $V_{out} = \frac{K_B T}{-q} [In(V_i) - In(RI_a)]$ b. $V_{out} = -RI_a e^{\frac{-qV_i}{K_B T}}$	05

[MTE 5131]

- **4B.** Add the following binary numbers and represent the result in 2's complement **05** form: **05**
 - a. 10101110 and 100111
 - b. 10010010 and 110011
 - c. 11001001 and 111110
- **5A.** In an operational amplifier as shown in **Fig 5**(**A**), if $V_1=10V$, $V_2=20V$, **02** $R_1=R_2=R_g=1$ Kohm and $R_f=1$ Kohm then calculate the feedback current.

- 5B. Explain the cyclic codes and recall the applications of cyclic codes in error 03 detection & correction.
- 5C. Design a serial transfer logic diagram and explain the implementation of 4-bit register to 4-bit register serial data transfer.