

VII SEMESTER B.TECH. (MECHATRONICS ENGINEERING) END SEMESTER EXAMINATIONS, NOV-DEC2018

SUBJECT: HYBRID AND ELECTRIC VEHICLES [MTE 4004]

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Data not provided may be suitably assumed

1A.	State the impact on airflow, maximum torque and maximum power when there is a change in a spark ignition engine from 2 valves per cylinder to 4 valves (2 inlet and 2 exhaust) per cylinder.	04
1B.	Discuss with neat sketches the design of traction motor for transmission levels at multi-gear depending upon speed-torque characteristics.	06
2A.	State the differences between field and armature orientations in different types of DC motors and compare the torque variations.	05
2B.	Formulate and sketch the potential difference across the electrodes of a fuel cell using current – voltage curves.	05
3A.	Construct a parallel HEV which is sized with primary steady power source and dynamic secondary power source.	04
3B.	Recall the various components of a 2 stroke ICE and the importance of combustion chamber in terms of volume.	04
3C.	Draw an auxiliary subsystem in an electric propulsion system.	02
4A.	Discuss the working of AFC and MCFC with its limitations.	05

[MTE 4004] Page **1** of **2**

- **4B.** List out the fundamentals of regenerative braking and outline the power flow in a HEV while establishing regenerative braking.
- **5A.** Calculate the output resultant torque and speed for a gear box having three gears, where $Z_1=11$, $Z_2=9$, $Z_3=17$. Plot speed-torque graph over specified time intervals by considering T_{in1} from 15 to 35 for 5 intervals and, where $\omega_{in1}=1500$ rpm $T_{in2}=90$ Nm & $\omega_{in2}=550$ rpm.
- **5B.** Design a series HEV using an induction motor and construct a circuit for pole switching using power electronics for speed & torque control.
- 5C Identify an application for speed coupling HE drive trains using transmotor and construct the source switching operation between primary & secondary power source.

[MTE 4004] Page **2** of **2**