Question Paper

Exam Date & Time: 24-Nov-2018 (10:00 AM - 01:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

SCHOOL OF INFORMATION SCIENCES

FIRST SEMESTER MASTER OF ENGINEERING - ME (EMBEDDED SYSTEMS)

Advanced Computer Architecture [ESD 611]

Marks: 100 Duration: 180 mins.

END SEMESTER DEGREE EXAMINATION NOVEMBER 2018 Answer all the questions.

- A. List out the difference between combinational and sequential Logic Circuits B. Define the following with suitable examples: (5 * 2)

 Minterms

 Maxterms
- In a computer instruction format the instruction length and (10) size of the address field are 11 & 4 bits respectively. A computer architect has already designed 6 two address & 24 zero address instructions. What is the maximum number of 1 address instructions that can be added to the instruction set?
- Using a 4 bit CLA as the building block, design the fastest (10) 64 bit adder. Estimate the add time of your design.
- Design a 4 bit general purpose register to perform the following function

S1	SO	FUNCTION
0	0	Load external data
0	1	Rotate left (A ₃ \leftarrow A ₀ , A _i \leftarrow $\underset{i}{A_{i-1}}$ for $\underset{i}{i}$ = 1, 2, 3)
1	0	Rotate right ($A_0 \leftarrow A_3$, $A_i \leftarrow A_{i+1}$ for $i = 0, 1, 2$)
1	1	No operation

Explain the Booth's algorithm for multiplication of two numbers represented in 2's complement validate to perform for 3 x (-3)

Page #1

6) Consider the following register transfer description.

(10)

Declare registers A [8], B [8], C [8], N [4]; Declare bus Outbus [8]; START: $A \leftarrow 1, B \leftarrow 1, C \leftarrow 0; N \leftarrow 10;$ Outbus $\leftarrow A;$ LOOP: Outbus $\leftarrow B;$ If N = 0 then go to HALT; $C \leftarrow A + B;$ $A \leftarrow B;$ $B \leftarrow C;$

> $N \leftarrow N - 1$; Go to LOOP;

HALT: HALT

Propose a block schematic of the optimized microprogrammed control unit; provide the state diagram and obtain the control words required in the optimized control memory.

- ⁷⁾ Explain the different operating modes of ARM7. (10)
- Explain following instructions with an example to each instruction (5 x2)

Load/store
Load/store halfword
Load/store byte
Load/store signed byte
Load/store signed halfword

- explain the working of following instructions: (5 * 2 = 10) (10)
 a) STMIA r0!, {r2, r3, r4} b) ADDEQ r0,r1,r2,LSR#2 c)
 MRS CPSR,r0
 - d) MOV PC,r14 e) BIC r0,r1

Write a short note on ASB bus. (10)

----End-----