Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

V SEMESTER B.TECH. (AERONAUTICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2018

SUBJECT: ORBITAL MECHANICS [AAE 4012]

REVISED CREDIT SYSTEM (28/11/2018)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data may be suitable assumed.

1A.	Analyze vis-viva equation in detail with necessary equations and explanations.	2								
1B.	Prove that the acceleration of center of mass of a two body system is zero									
1C.	Derive and analyze Kepler's first law from fundamentals.									
2A.	What do you mean by "mean motion" in an orbit? How it is calculated?									
2B.	Explain the process of orbit projection in detail.									
2C.	Calculate the orbital elements eccentricity, specific angular momentum and inclination for a geocentric satellite whose position and velocity state vectors are $\mathbf{r} = 2615 \mathbf{i} + 15881 \mathbf{j} + 3980 \mathbf{k}$ and $\mathbf{v} = -2.7 \mathbf{i} + 0.8 \mathbf{j} + 5 \mathbf{k}$									
3A.	Explain the significance of phasing maneuvers with necessary diagrams.									
3B.	Explain the procedure for accomplishing Hohmann transfer between two coaxial elliptical orbits.									
3C.	A spacecraft is in a 300 km circular earth orbit. The eccentricity of first transfer ellipse is 0.3. Calculate (a) the total delta-v required for the bi-elliptic transfer to a 3000 km altitude coplanar circular orbit and (b) the total transfer time.									
4A.	Examine the term "sphere of influence" in detail.	2								
4B.	What do you mean by patched conics method? Examine its significance with necessary diagrams.									

AAE 4012 Page 1 of 2

- 4C. A spacecraft is launched on a mission to Mars starting from a 300 km circular parking orbit. Calculate (a) the delta-v required and (b) the amount of propellant required as a percentage of the spacecraft mass before the delta-v burn, assuming a specific impulse of 300 seconds. The gravitational parameters for sun is 1.327 x 10¹¹ km³/s². The radius of earth and mars are 149.6 x 10¹¹ km and 227.9 x 10¹¹ km respectively.
- **5A.** What do you mean by orbital perturbations? Analyze its various categories.
- **5B.** Analyze the effects of earths oblateness on satellite orbits.

2

5C. Analyze any one debris mitigation technique in detail with all necessary diagrams and explanations.

AAE 4012 Page 2 of 2