	Reg. No.											
MANIPAL 1ANIPAL	INSTIT	U	TE	0	F	TE	C	HN	١C)L(00	GΥ

"Spired By LIF" (A constituent institution of MAHE, Manipal)

V SEMESTER B.TECH BIOTECHNOLOGY END SEMESTER EXAMINATIONS, NOV/DEC 2018 SUBJECT: BIOPROCESS ENGINEERING [BIO 3102] REVISED CREDIT SYSTEM

Time: 3 Hours

(21/11/2018)

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitable assumed.

	During a test of kinetics of an enzyme-catalyzed reaction, the following data were recorded. Determine the kinetic constants, type of inhibition and K _I : (Use LB-plot)									
1A.		S (mol/ L)	0.2	0.1	0.06	0.04	0.02		5	
		V (mol / L-min) @ I = 0	3.22	2.68	2.02	1.62	1.34			
		V (mol /L-min) @ I = 1.2 mol/ L	2.68	2	1.34	1	0.8			
1B.	An enzyme is used to produce a compound used in manufacture of sunscreen lotion. V_{max} for the enzyme is 2.5 mmol /m ³ .s; K _M is 8.9 mM. The initial concentration of substrate is 12 mM. Plot the time required for batch reaction as a function of substrate conversion. If the enzyme deactivates with half-life 4.4 h, determine the time required to achieve 90% substrate conversion.								5	
2A.	The temperature history of the heating and cooling of a 40,000 L tank during sterilization of medium is: 0 to 15 min, $T = 85^{\circ}C$; 15 to 40 min, $T = 121^{\circ}C$; 40 to 50 min, $T = 85^{\circ}C$; 50 to 60 min, $T = 55^{\circ}C$; > 60 min, $T = 30^{\circ}C$. The medium contains vitamins, the most fragile of the vitamins has an activation energy for destruction of 10 kcal/mol, and the value of A is 1×10^4 min ⁻¹ . Assume vitamin destruction is first order and the initial concentration is 50 mg/L and the medium contains 2.5 x 10^3 spores/L. The spores have an E _d of 65 kcal/mol and k _d at 121°C is 1.02 min ⁻¹ . Estimate the probability of unsuccessful sterilization and what fraction of the vitamin remains active?								5	
2 B .	 Fifty thousand liters of a complex medium are to be pumped from a tank held at ambient conditions through an HTST sterilizer consisting of 20 m of 8-inch Schedule 80 pipe. The medium volume is to be sterilized and added to the production vessel within <i>one</i> hour, and the acceptable contamination probability is 1 in 350 h. The model spore is <i>Bacillus thermophillum</i>, and the coefficients for its sterilization are: Frequency Factor = 4.93x10⁴⁰ min⁻¹ and Activation Energy = 71,395 cal/mole. a. Calculate the sterilization temperature, If the initial cell population of <i>B. thermophillum</i> is 5.6x10⁶/mL. b. In part (a) if the temperature were to drop by 1.5°C, what would be the probability of contamination? Medium Properties: density = 930 kg/m³; viscosity = 2.36x10⁻⁴ kg/m-s 								5	

	For 8 inch Schedule 80 pipe, ID = 7.625 inches.														
	L-Lactate 2-monooxygenase from Mycobacterium smegmatis is immobilised in spherical agarose beads. The														
	enzyme catalyses the reaction:														
	$C_3H_6O_3$ (Lactic acid) + O_2														
24	Beads 4 mm in diameter are immersed in a well-mixed solution containing 0.5 mM oxygen. A high lactic acid									4					
JA.	concentration is provided so that oxygen is the rate-limiting substrate. The effective diffusivity of oxygen in								4						
	agarose is 2.1 x 10^{-9} m ² /s. K _m for the immobilized enzyme is 0.015 mM; V _{max} is 0.12 mol / s. kg enzyme. The														
	beads contain 0.012 kg enzyme / m ³ gel. External mass-transfer effects are negligible. Determine the largest														
	bead size that allows the maximum conversion rate?														
	Assume that an enzyme is uniformly immobilized in soft gel of spherical shape and is kept in contact with the														
3B.	substrate solution. Derive an expression for concentration profile of substrate when it is catalysed by the								6						
	immobilized enzyme which follows first order reaction kinetics. Briefly list the assumptions made.														
	Data collected during fermentation of <i>Pseudomonas ovalis</i> B 1486 at stirrer speed of 700 rpm are given by														
	Mukhopadhyay	and Ghose	e. The ferme	enter volum	ne was 3 L.	Air flow i	nto the vess	sel was ma	intained at	1 vvm.					
	The air pressure	e was 3 atm	and the ter	nperature 2	9°C. The fo	ollowing dat	ta were mea	sured:							
	Fermentation	0	4	6	7	8	9	10	11						
1.4	Time, h										6				
4 A.	C _{AL} , ppm	5.9	5.7	5.4	5.1	4.7	4.1	4.1	4.2		U				
	(Y _{AG}) _o	0.21	0.209	0.208	0.207	0.206	0.204	0.204	0.205						
	a. Determine $k_L a$.														
	b. What is	b. What is the solubility of oxygen in the fermentation broth?													
	(Use Oxygen B	alance Metl	nod)												
	A genetically-engineered strain of yeast is cultured in a bioreactor at 30°C for production of heterologous														
	protein. The oxygen requirement is 80 mmol/L-h; the critical oxygen concentration is 0.004 mM. The solubility														
	of oxygen in the fermentation broth is estimated to be 10% lower than in water due to solute effects. (Given H =														
4B.	26.1 atm-m ³ /kg)									2+2				
	a. What is the mass-transfer coefficient necessary to sustain this culture if the reactor is sparged with air at														
	approximately 1 atm pressure?														
	b. What mass-transfer coefficient is required if pure oxygen is used instead of air?														
	Define the following:														
5A.	a. Diauxic growth d. Y _{xs}									1x5					
	b. Cryptic growth e. Endogenous metabolism														
	c. Maintenance coefficient														
	The growth of a		population :	is a function	n of pH and	is given by	the follow	ing equatio	on:						
	$\mu_a = -$	$\frac{1}{x} \frac{dx}{dx} =$	$\mu_m S$												
	$K = \frac{1}{1+H^+} + S$									5					
5B.	$k_{s} \begin{bmatrix} 1 & k_{1} \end{bmatrix}$														
	a. With a given set of experimental data (X and S versus t), describe how you would determine the														
	constants μ_m , K _s , and k ₁ .														
	b. How w	ould the do	uble recipro	cal plot 1/µ	ug vs 1/S ch	ange with p	$H(H^+) con$	centration?	1						