Reg. No.											
----------	--	--	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

B.TECH. (CHEMICAL ENGINEERING)

END SEM EXAMINATIONS, November 2018

SUBJECT: COMPUTATIONAL METHODS IN CHEMICAL ENGINEERING [CHE 3105]

	REVISED CREDIT SYSTEM, Fime: 3 Hours Instructions to Candidates							ATE: 21/11/2018 MAX MARKS: 50			
			l questions ata may be	FULLY . suitable as	sumed.						
1A	Solve for X by Gauss Elimination method when AX =B										
	A>>	2	3	1	3	B>>	-4				
		1	2	3	2		1				
		3	1	2	3		-3				
		3	4	5	3		-6				
	temperature. For a 10K3A Betatherm thermistor the relationship between the resistance R of the thermistor and the temperature is given by $\frac{1}{T} = 1.129241 \times 10^{-3} + 2.341077 \times 10^{-4} \ln(R) + 8.775468 \times 10^{-8} \{\ln(R)\}^3$ T is in Kelvin. Use the Newton-Raphson method to find the resistance R at										
1C	18.99°C.			as R = 7,500					3		
IC	$0 = \frac{1}{\sqrt{f}} + 2.0 \log \left(\frac{\varepsilon}{3.7D} + \frac{2.51}{\text{Re}\sqrt{f}}\right)$								3		
	Calculate the friction factor with above equation using regular Falsi method										
	if $\epsilon/D = 0.0001$ and Re = 100,000. Use lower and upper limits as 0.02 and 0.05 respectively. Make 2 iterations.										
	respectiv	ery. wiak		JII5.							
2A		centration $.5 - 3.5x$		a soap mak	er is given	is as a func	tion of time	2	6		

	dt			,											
	Where x is the salt concentration. At time $t = 0$, the salt concentration is														
	50 g/L. Us	sing	RK4	1 meth	nod fir	nd the	conce	entrati	on a	fter ().2 m	inut	es. Use		
	time step a	ıs 0.	1 mi	ns											
2B	Tom starts	a bi	ke fr	om re	st (zei	o spec	ed) an	d trav	els at	velo	ocity	at di	fferent time		
	as given be	elow	. Fin	d the	distar	nce tra	velled	l using	g Tra	pezo	oidal	Rule			
	t(min)	0	2	4	6	8	10	12	14	16	18	20		4	
	v(km/hr)	0	60	108	150	174	192	120	66	30	12	0			

3A	$q = Q_m \frac{K_a C_{eq}}{1 + K_a C_{eq}}$ The above Langmuir adsorption equation is to be fitted to the following data using linear regression. The problem can be converted to linear regression by plotting C _{eq} /q versus C _{eq} . Hence find the values of K _a (L/mg) and Q _m (mg/g).									
	C _{eq} (mg/L)	0.64	1.28	3.30	6.77	10.00	14.72	17.86	21.08	
	q(mg/g)	4.46	8.38	12.58	14.49	16.51	15.28	16.88	18.25	
3B	The vapor pressure of water increase with temperature. The values are tabulated below.									
	T °C	30	4	40 5	0 60)				
	p _v (mm H	Ig) 31.	.8 5	55.3 9	2.5 14	9.4				
	Find the v	apor pre	ssure at	35 °C u	sing New	ton's Fo	rward in	terpolatio	on	

4 A	Solve the system of simultaneous non-linear equations using Newton-	4
	Raphson method	
	$2x^2 + 3xy + y^2 = 3$	
	$4x^2+2xy+y^2=30$	
	Given $x_0 = -3$, $y_0 = 2$. Make 1 iteration.	
4B	The spread of a medicine in human bloodstream and gastrointestinal (GI)	6
	tract is described by the following set of two differential equations:	
	$\frac{dx}{dt} = 3t^2 - 0.7x$	
	$\frac{dy}{dt} = 0.7x - 0.02y$	
	x(t) and $y(t)$ represent the distributions in the gastrointestinal tract and	
	bloodstream, respectively. At $t = 0$, $x = y = 0$. Determine the profiles up to t	
	$= 2$. $\Delta t = 1$. Use RK4 method.	

5 Solve the equation for flow with reaction in a PFR using finite difference 10 implicit method - v de 96 D where C is concentration in water (mol/L), t is time (s), v is pore water flow velocity (m/s), x is distance (m), D is the hydrodynamic dispersion coefficient (m^2/s) , k is the first order reaction constant The length of reactor is 1 m. dx = 0.25 m, dt = 1 s. At time t=0, the initial concentration is 0 at all nodes except left boundary where the boundary condition is concentration is 1 mol/L. The other end of the rod has zero dispersion boundary condition. Pore Velocity = 0.5 m/s, k=0.1 s⁻¹, Dispersion coefficient D = $0.2m/s^2$, Take dx =0.25 m, Find the concentrations at the nodes at time =1 seconds.