Reg. No.									
----------	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

B.TECH. (CHEMICAL ENGINEERING)

MAKE UP EXAMINATIONS, Dec 2018

SUBJECT: COMPUTATIONAL METHODS IN CHEMICAL ENGINEERING [CHE 3105]

REVISED CREDIT SYSTEM, Time: 3 Hours **Instructions to Candidates** MAX MARKS: 50 ✤ Answer all questions FULLY. ✤ Missing data may be suitable assumed. **1A** Solve for X by Gauss Elimination method when AX = B4 A>> 2 3 1 4 B>> 22 1 2 3 2 15 3 1 2 3 26 3 4 5 3 26 **1B** $f(x) = xe^x - \cos(x) = 0$ 3 Solve using Newton Raphson method. Initial guess is 0.6. Make 3 iterations 1C 3 $0 = \frac{1}{\sqrt{T}} + 2.0 \log \left(\frac{\varepsilon}{3.7D} + \frac{2.51}{\text{Re}\sqrt{T}}\right)$ Calculate the friction factor with above equation using regular Falsi method if $\epsilon/D = 0.0001$ and Re = 10,000. Use lower and upper limits as 0.02 and 0.05 respectively. Make 3 iterations.

2A	Solve by RK4 method, the equation $dy/dx = 3e^{-x}-0.4y$	6
	Initial condition is that at $x=0$, $y=5$, Take step size as 1.5, Find y at $x=6$	
2B	The specific heat of gas as a function of temperature is given $Cp = 0.4 + \frac{18}{T+40}$	
	KJ/kg. The temperature of the gas is increased from $T_1 = 10^{\circ}$ C to $T_2 = 50^{\circ}$ C by the addition of heat at constant pressure. The heat added to the gas is given by the expression:	4
	$Q = \int_{T_1}^{T_2} Cp dt$	
	Determine the total heat added to the gas using Simpsons 1/3 rule, make 8 intervals.	

3A	The rate of an enzymatic reaction is given by the expression: The k and Km can be estimated by linear regression by defining x = 1/S and $y = 1/r$, Find the values of K _m and k. Find the value of R ² of the linear fitting. $r = \frac{k[S]}{K_m + [S]}$								k[S] m+[S]	8	
	[S]	1.233	0.540	0.442	0.258	0.198	0.162	0.130	0.128]	
	r	5.970	3.319	2.253	2.547	1.493	1.182	1.095	0.869		
		1		_	-		_			_	

3B	The vapor pre tabulated belo		water inc	rease w	ith tem	perature. The values are	2
	T °C	30	40	50	60]	
	p _v (mm Hg)	31.8	55.3	92.5	149.4	-	
	Find the vapor	r pressure	$e \text{ at } 45^{\circ}\text{C}$	using	Newton	n's forward interpolation	

4A	Solve the system of simultaneous non-linear equations using Newton-Raphson method $x^2+y=11$ x +y ² =7	4
	Initial guess $x_0 = 3.5$, $y_0 = -1.8$. Make 1 iterations.	
4 B	Solve by RK4 method and find value of y and z at $x = 0.2$	6
	dy/dx = x + z	
	$dz/dx = x-y^2$	
	Step size $\Delta x= 0.1$. Initial condition is that at x=0, y=2, z=1	

5	Solve the equation for flow with reaction in a PFR using finite difference implicit method	10
	$\frac{\partial e}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - v \frac{\partial e}{\partial x} - ke$	
	where C is concentration in water (mol/L), t is time (s), v is pore water flow velocity (m/s), x is distance (m), D is the hydrodynamic dispersion coefficient (m^2/s), k is the first order reaction constant	
	The length of reactor is 1 m. $dx=0.25$ m, $dt=1$ s. At time t=0, the initial concentration is 0 at all nodes except left boundary where the boundary condition is concentration is 1 mol/L. The other end of the rod has zero dispersion boundary condition.	
	Pore Velocity = 0.25 m/s , k= 0.3 s^{-1} , Dispersion coefficient D = 0.3 m/s^2 , Take dx = 0.25 m , Find the concentrations at the nodes at time = 1 seconds	