MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent unit of MAHE, Manipal)

V SEMESTER B.TECH. END SEMESTER EXAMINATIONS NOV 2018

SUBJECT: INTRODUCTION TO BIOCHEMICAL ENGINEERING

PE I [CHE 4018]

REVISED CREDIT SYSTEM (26/11/2018)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitable assumed.

1A.	Explain the cyclization of d-glucose thereby discuss about Fischer and Haworth projections.				05
1B.	Discuss about the different types of membrane phospholipids with example.				03
1C.	Write a short note on bacterial flagella with pictorial representation				
2A.	well as in the p data below, co [S] mM 3 6 12 24 36 (i) Determ (ii) Determ (iii) Also st	resence of Inhibitor nstruct or calculate Without inhibitor $V_0 \text{ (mmol/min)}$ 3.90 6.00 8.40 10.8 12.0 ine K _M and V _{max} in ine the type of inhibitor	A and Inhibitor the following: Inhibitor A V_1 (mmol/min) 2.40 3.60 5.10 6.60 7.20 the presence and bitors A and B ects of the inhibitor	psence of inhibitors, as as B. Using the given Inhibitor B V_2 (mmol/min) 1.29 2.40 3.90 6.30 8.55 d absence of inhibitors tors A and B be over	07
2B.	Write a short ne example.	ote on positive and	negative cooper	ativity with suitable	03

3A.	Explain the metabolic pathway which results in the formation of pyruvates from a glucose molecule.	06			
3B.	Discuss about the synthesis of ATP molecules by electron transport chain.				
4A.	Derive an expression to determine the reaction time required for a single cell-substrate system in a batch bioreactor, if the kinetics of substrate consumption follows Michaelis-Menten equation.				
4B.	Discuss about the steps involved in receptor mediated endocytosis with a schematic representation				
5A.	Write a short note on prey-predator model. Also derive Lotka-Volterra equation to prove the stability of the prey-predator system.				
5B.	Derive an expression for doubling time during exponential phase in a batch reactor.				
