Reg. No.						
----------	--	--	--	--	--	--

V SEMESTER B.TECH. (CHEMICAL ENGINEERING) MAKE-UP EXAMINATIONS, DECEMBER 2018

SUBJECT: PINCH TECHNOLOGY [CHE4021]

REVISED CREDIT SYSTEM

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** questions.
- Use of linear graph sheets is permitted.
- Missing data may be suitably assumed.

	Explain th	e importanc	e of energy i	ntegration in process industries.	03			
1B	Explain the key steps in Pinch Technology procedure							
1C	A process flow diagram of a typical process is shown in figure below. Extract the stream data for this process							
	$\Delta H = -4$ Feed $\frac{140}{CP}$ $CP = \Delta H = 54 \text{ kg}$	1.4 135 °C	10°C	CP = 0.6 50°C $\Delta H = -150$ Reboiler 160°C $\Delta H = 150 \text{ kW}$ $AH = -104 \text{ kW}$				
2A	Explain th	e step by sto	ep procedure	to construct composite curves for pinch method.	04			
ZA			Find the minimum utilities required for four stream case for load integration with Δ Tmin =10 0 C.					
2A 2B				ed for four stream case for load integration with $\Delta T \min = 10$ °C.	06			
	The stream	n data given	below.		06			
	The stream stream	n data given	below.	CP (kW/°C)	06			
	The stream stream C1	T _S (°C)	telow. T _t (°C) 160	CP (kW/°C)	06			
	The stream stream C1 C2	T _S (°C) 25 80	below. T _t (°C) 160 135	CP (kW/°C) 2 3	06			
	The stream stream C1 C2 H1	1 data given T _S (°C) 25 80 150	below. Tt (°C) 160 135 40	CP (kW/°C) 2 3 2	06			
	The stream stream C1 C2 H1 H2	T _S (°C) 25 80 150 90	below. Tt (°C) 160 135 40 40	CP (kW/°C) 2 3	06			

CHE4021 Page 1 of 2

В	Define the threshold problem in pinch technology method and explain how this will affect the energy integration process							
С	List out the basic heuristic rules to be followed for data collection in Pinch Technology and explain the same							02
A	Explain the significance of grand composite curve in pinch design method.							04
4B	The stream data for the process is given in Table below. For this process compute the amount of hot and cold utility required by considering Δ Tmin as 10°C using Problem Table Algorithm (PTA) analysis.							00
		Stream Name	Stream Type	$T_S(^0C)$	$T_T(^{0}C)$	CP (kW/ ⁰ C)		
		1	Cold(C1)	10	45	120		
		2	Hot(H1)	45	15	110		
		3	Cold(C2)	50	85	5		
		4	Hot(H2)	85	15	5		
		5	Cold(C3)	10	75	25		
		6	Cold(C4)	45	80	20		
		7	Hot(H3)	40	10	120		
4	List out the different feasibility criteria in detail for Pinch Design Methods of Heat Exchange Networks (HENS) Synthesis. (Minimum two points to be explained in detail)							0
В	For a particular process, the total area targeted found to be 5000 m^2 using Pinch Design Method Also, the present problem requirement of minimum hot and cold utility are found to be 5 MW and MW, respectively. The Cost of hot utility= $100 \text{ ($.kW^{-1}.y^{-1})}$, Cost of cold utility = $10 \text{ ($.kW^{-1}.y^{-1})}$ Installed capital cost = $40000 \times A^{0.83}$, Rate of interest = 10% and Plant life = 5 year. Target the contribution of the state of the						to be 5 MW and 3 =10 (\$.kW ⁻¹ .y ⁻¹), ar. Target the cost	0
	for this process (Total Annual Cost). Conversion of the capital cost into annual capital cost using conversion factor as: $=\frac{i(1+i)^n}{(1+i)^n-1}$. Target the cost for this process (Total Annual Cost).							
\overline{z}								0

CHE4021 Page 2 of 2