

MANIPAL INSTITUTE OF TECHNOLOGY

V SEMESTER B.TECH. (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV 2018

SUBJECT: TRANSPORT PHENOMENA [CHE 3103]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitably assumed.

1A.	State and describe a) Newton's law of viscosity, b) Fourier's Law of heat conduction c) Fick's law of diffusion.	3
1 B .	Consider steady state axial flow of an incompressible liquid in an annular region between two co-axial cylinders of radius kR and R. the fluid is flowing up-ward in the tube that is against the gravity. Derive an equation for shear stress, velocity, maximum velocity and average velocity.	
	maximum velocity and average velocity.	7
2A.	Derive the expression for temperature profile in the rectangular fin with its ends insulated. State assumptions for it.	8
2B.	Thermocouple in a cylindrical well inserted into a gas stream, estimate the true temperature of gas stream if thermocouple junction (wall) temperature 260°C, pipe wall temperature is 176.7°C, $h= 681.36 \text{ w/m}^2 \text{ °C},$ $K = 103.8 \text{ w/m} \text{ °C},$ $B= 2.032 \text{ x} 10^{-3} \text{ m}$ $L= 0.06096 \text{ m}.$	2
3.	Consider a spherical nuclear fuel element, it consists of a sphere of fissionable material with radius R^F , surrounded by a spherical shell of aluminum cladding outer radium R^C . The source of thermal energy resulting from nuclear fission is given by $Sn(Cal/cm^3.s)$ and source can be a simple parabolic function $Sn = Sno [1+b (r/R^F)^2]$ Develop a total temperature profile for the system.	10
4.	Gas A dissolves in liquid B in beaker and diffuses isothermally into liquid phase. as it diffuses, A also undergoes an irreversible first order homogeneous chemical reaction $A+B \rightarrow AB$, treat this as a binary solution of A and B, ignoring the small amount of AB that is present (the pseudo binary assumption).Derive an expression for concentration of A as a function of liquid depth , also obtain an expression for average concentration in liquid phase and molar flux of A at gas – liquid interphase . Rate is given by k ^m C _A .	
	P.T.O	10

5A.	Derive the equation of continuity from the concept of mass conservation with neat diagram.	4
5B.	Establish Navier-Stokes equation from the fundamental momentum balance with neat diagram.	6