Reg.No.

V SEMESTER B.TECH. (INFORMATION TECHNOLOGY / COMPUTER AND COMMUNICATION ENGINEERING)

END SEMESTER EXAMINATIONS, NOVEMBER 2018

SUBJECT: PROGRAM ELECTIVE I - PATTERN RECOGNITION [ICT 4020]

REVISED CREDIT SYSTEM (30/11/2018)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- Answer ALL the questions.
- Missing data may be suitably assumed.
- 1A. Estimate $p(\theta/D)$ of the univariate Gaussian distribution, where $\theta = (\hat{\mu}, \hat{\sigma}^2)$, using Bayesian 5 parameter estimation technique and state the significance of the estimated value.
- 1B. Compute the Type_of_candidate for the tuple (40, 600000, 27000) using K-nearest neighbor 3 algorithm with k = 3 for the data given in Table Q.1B.

Table Q.1B

Age (Years)	19	19	27	25	24	37
Savings (Rs.)	50000	30000	200000	150000	8500	500000
Monthly_Expenses (Rs.)	8000	6000	20000	35000	6000	40000
Type_of_candidate	Student	Student	Professional	Professional	Student	Professional

1C. Prove that the uncorrelated variables need not be independent using relevant example.

2A. Extract the productions from transmission and emission matrix given in Table Q.2A. Considering 5 S1 as the starting state, check whether the productions yields the strings "eat", "team" and "meet". If yes, compute the total probability of generating the strings.

Table Q.2A

Transition Matrix		Present State		Emission	m	е	a	t
		S1 S2 S2 S3	Matrix					
Previous State	S1	0.8	0.2	S1	0.2	0.5	0	0.5
	S2	0	1	S2	0	0.3	0.7	0
	S3	1	0	S3	0	0	0.25	0.75

2B. Compute the distance of point (v = (66, 640, 44)) from the data points given in Table Q.2B using 3 Chebyshev distance metric. Assume h = 1000. Also, state the properties of distance metrics.

Table Q.2B. 64 69 73 X (Height) 68 66 600 Y (Score) 580 570 590 660 Z (Age) 29 33 37 46 55

2C. State the "No Free Lunch Theorem" and "Ugly Duckling Theorem".

1

2

3A. Draw the HMM for the data given in Table Q.3A and decode the states emitting sequence 'E1 E2 5 E1 E1 E3' using Viterbi algorithm. Assume that the probability of states at any random time instance is P(S1) = 0.12, P(S2) = 0.22 and P(S3) = 0.66

Table Q.3A

Transition Matrix		Present State			Emission Matrix	E1	E2	E3
		S1	S2	S3	S1	0.6	0.4	0
Previous State	S1	0	0.2	0.8	S2	0.3	0	0.7
	S2	0.5	0	0.5	S3	0	0.8	0.2
	S3	0	0.3	0.7				

3B. Consider the Table. Q.3B representing marks distribution for a two class category problem. **3** Identify the category of given marks 66 using Bayes decision rule. Assume the prior probability of obtaining first class or second class is 0.5 each.

Table Q.3B

Marks	62	10	36	45	78	89	25	95	59	97
Class	First	Second	Second	Second	First	First	Second	First	Second	First

3C. Outline the limitations of Bayesian decision making.

2

- 4A. Differentiate between the following:
 - i) PCA and LDA
 - ii) Parametric and Nonparametric approach
 - iii) HMM and BBNs
 - iv) Bagging and boosting techniques
 - v) Parzen window and KNN
- 4B. Explain the techniques to overcome missing and noisy features in the data set used for pattern 3 classification.
- 4C. Bayes decision rule is used for minimizing probability of error. Justify this statement using suitable 2 graph and equations.
- 5A. Obtain the Sum of Squared Error (SSE) and the new values of 'a' and 'b' after first iteration, using gradient descent for a linear regression algorithm. Consider the data given in Table Q.5A. Assume the initial value of a = 0.1, b = 0.2, r = 0.01. Use min-max normalization technique to normalize the values.

Table. Q.5A.

Quantity in kg (X)	11	9	2	5	6	4
Price (Y)	300	250	50	130	150	100

- **5B.** Explain the importance of feature extraction and classifier evaluation during design cycle of pattern 3 recognition system.
- 5C. Calculate the Jackknife estimate of bias and variance of mode using histogram plot for D = {15, 15, 20, 20, 20, 30, 30}.