Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent Institution of MAHE, Manipal)

V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKEUP EXAMINATIONS, DECEMBER 2018

SUBJECT: COMMUNICATION SYSTEMS [ELE 3103]

REVISED CREDIT SYSTEM

		REVISED CREDIT SYST	EM					
Tir	me: 3 Hours	Date: 26, December 2	018	Max. Marks:	50			
Ins	structions to Candidates: Answer ALL the question	c						
	 Allswer ALL the question Missing data may be suita 							
	0 1							
1A.	Derive the equation of transmitted power with respected to modulation index and carrier power for an Amplitude modulated wave, where the baseband signal is $A_m \cos 2\pi f_m t$ and carrier signal is $A_c \cos 2\pi f_c t$.							
1B.	Explain Single Side Band AM signal generation and detection with block diagram and mathematical expressions.							
1C.	A carrier wave of frequency 10MHz and peak value 10V is amplitude modulated by a 5KHz sine wave of amplitude 6V. Draw the amplitude spectrum in terms of its modulation index.							
2A.	Consider an FM signal with : frequency deviation, $\Delta f = 10$ kHz, frequency of message signal, $fm = 10$ kHz, amplitude of carrier signal , $Ac = 10$ V, frequency of the carrier signal, $fc = 500$ kHz. Draw the spectrum for FM signal. Use the Bessel table as given in table 1.							
2B.	Discuss the FM slope detection	Discuss the FM slope detection technique with block diagram.						
2C.	For an indirect FM transmitter , with the following parameters, determine							
	a)Carrier frequency b) modulation index of NBPM modulator							
	c) Frequency deviation and modulation index at the 2 nd multiplier output.							
	(Given: transmit carrier frequency= 102MHz; First multiplier,n1= 48 ; 2^{nd} multiplier , n2= 64 Crystal reference oscillator frequency = 10MHz,; Δ f at modulator = 24.5Hz ; message signa frequency, fm = 50Hz)							
3A.	Discuss the concept of FM s diagram.	tereo multiplexing and d	lemultiplexing concer		(03)			
3B.	For the following signal s2(t) sl	10wn in fig 3B,	s ₂ (t)					
	a) Plot the matched filter outpu	t as a function of time.	$\frac{A}{2}$					
	b) Specify the peak value of the	output.		$\frac{3T}{4}$				

fig 3B

3C. 24 voice signals are sampled uniformly and then time division multiplexed. The sampling operation uses the flat-top samples with 1microsec duration. The multiplexing operation includes provision for Synchronization by adding an extra pulse of sufficient amplitude and also 1micro second. Assuming a sampling rate of 8KHz, calculate the spacing between successive pulses of the multiplexed signal.

(03)

(05)

- 4A. For a Binary Phase Shift Keying technique,
 - a) Find the set of orthonormal basis functions to represent this set of signals.
 - b) Obtain the coordinates of message points and then draw the signal constellation diagram.
 - c) Draw the BPSK waveform for the message signal 011010 (consider bit rate = carrier frequency).
 - d) Draw the block diagram of transmitter and receiver of BPSK scheme.
- **4B.** A (6,3) linear block code is generated according to the parity bit equations

b1 = m1 + m2 + m3; b2 = m2 + m3; b3 = m1 + m2

- a) Find the generator matrix
- b) Find the code word for the transmitted message 110 with the given specifications
- c) Let received code r=[1 1 0 1 1 1]. Decode this received word by finding the location of the error and obtain the correct code word. (05)
- 5A. Draw the convolution encoder structure with generator polynomials, $g_1(D) = 1 + D + D^2$, $g_2(D) = 1 + D^2$. Find the code vector corresponding to the message 10011 using state diagram for the given convolutional encoder.
- **5B.** Decode the message signal for received sequence 01 00 01 00 00 for a convolutional encoder with state table given as below.(Consider the state assignment A= 00, B=10, C=01,D=11)

Present Next State		Next State	Code Vector		
state	(with input=0)	(with input =1)	(with input=0)	(with input=1)	
А	А	В	00	11	
В	С	D	01	10	
С	А	В	11	00	
D	С	D	10	01	

Table	1	:	Bessel	Table
-------	---	---	--------	-------

Modulation								Sideba	nd		
index	Carrier	1	2	3	4	5	6	7	8	9	10
0.00	1.00										
0.25	0.98	0.12									
0.5	0.94	0.24	0.03								
1.0	0.77	0.44	0.11	0.02							
1.5	0.51	0.56	0.23	0.06	0.01						
2.0	0.22	0.58	0.35	0.13	0.03						
2.41	0	0.52	0.43	0.20	0.06	0.02					
2.5	-0.05	0.50	0.45	0.22	0.07	0.02	0.01				
3.0	-0.26	0.34	0.49	0.31	0.13	0.04	0.01				
4.0	-0.40	-0.07	0.36	0.43	0.28	0.13	0.05	0.02			
5.0	-0.18	-0.33	0.05	0.36	0.39	0.26	0.13	0.05	0.02		

(03)

(07)