Reg. No.



MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent Institution of MAHE, Manipal)

## V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, NOVEMBER 2018

## SUBJECT: COMMUNICATION SYSTEMS [ELE 3103]

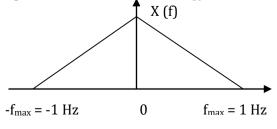
REVISED CREDIT SYSTEM

| Time: 3 Hours                                                                                                                                               | Date: 23, November 2018 | Max. Marks: 50 |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|--|--|--|
| Instructions to Candidates:                                                                                                                                 |                         |                |  |  |  |
| <ul> <li>Answer ALL the c</li> </ul>                                                                                                                        | juestions.              |                |  |  |  |
| <ul> <li>Missing data may</li> </ul>                                                                                                                        | be suitably assumed.    |                |  |  |  |
| <b>1A.</b> A carrier signal of 1V amplitude and sinusoidal modulating signal of 0.5V, put in series, are applied to a square law modulation characteristics |                         |                |  |  |  |

$$i_{o} = (10 + kV_{i} + k'V_{i}^{2}) mA$$

where  $V_i$  is the input in volts.  $k=2mA/V \& k'=0.2mA/V^2$ . Considering only the frequency components of the AM signal corresponding to the carrier frequency, find the depth of the modulation in the resulting AM signal. (03)

- **1B.** Explain DSBSC generation and detection with block diagram and mathematical expressions. Evaluate the effect of phase error  $\varphi$ , in the local carrier of the detector. **(05)**
- **1C.** A message signal with bandwidth 10 KHz is Lower-Side Band SSB modulated with carrier frequency  $fc_1 = 10^6$ Hz. The resulting signal is then passed through a narrow-band frequency modulator with carrier frequency  $fc_2 = 10^9$ Hz. Then find the bandwidth of the output. (02)
- **2A.** A single tone FM is represented by the voltage equation as  $V(t) = 12\cos(6 \times 10^8 t + 5 \sin 1250 t)$ . Determine
  - i. Carrier frequency
  - ii. Modulating frequency
  - iii. Modulation index
  - iv. Frequency deviation
  - v. Highest and lowest frequencies obtained by the modulated signal.
  - vi. Power dissipated in  $10\Omega$  resistor. (03)


| 2B. | B. Explain FM super heterodyne receiver with the help of block diagram. Explain why F is more robust than AM. |      |
|-----|---------------------------------------------------------------------------------------------------------------|------|
| 2C. | Explain one application of VSB modulation with the spectrum of filter response.                               | (03) |

**3A.** Discuss the concept of Time division multiplexing with block diagram. (03)

- **3B.** Consider the signal  $s(t) = \begin{cases} 2, for \ 0 \le t \le \frac{T}{2} \\ -1, for \ \frac{T}{2} \le t \le T \end{cases}$ 
  - a) Determine the impulse response of a filter matched to this signal and sketch it as a function of time.
  - b) Plot the matched filter output of s(t) as a function of time.
- **3C.** Figure Qn.3C shows the spectrum of a message signal x(t). The signal is sampled at the rate of  $f_s = 1.5 f_{max}$ , where  $f_{max} = 1$  Hz, is maximum signal frequency. Sketch the spectrum of sampled version of the signal. If the sampled signal is passed through an ideal LPF of bandwidth  $f_{max}$ , sketch the spectrum of the output signal from this filter. (03)
- 4A. For a Binary Frequency Shift Keying technique,
  - a) Find the set of orthonormal basis functions to represent this set of signals.
  - b) Obtain the coordinates of message points and then draw the signal constellation diagram.
  - c) Draw the BFSK waveform for the message signal 011010 (consider bit rate = carrier frequency).
- **4B.** The binary sequence 1100100010 is applied to the DPSK transmitter.
  - a) Sketch the resulting waveform at the transmitter output with the help of the DPSK transmitter block diagram.
  - b) Applying this waveform to the DPSK receiver (with block diagram) show that, the original binary sequence is reconstructed at the receiver output. *(04)*
- **4C.** Construct a [7, 4] cyclic code, where the generator polynomial coefficients are 1011. Find the code vector for the message 0101.
- **5A.** Draw the convolution encoder structure with generator polynomial  $g1(D) = D+D^3$ ,  $g2(D) = D+D^2$ ,  $g3(D) = 1+D+D^2$ . Find the code vector corresponding to the message 1100 using state diagram for the given convolutional encoder. Justify your answer with generator polynomial concept.
- **5B.** Decode the message signal for a received sequence 011100 using Viterbi Decoding algorithm. State table for the convolutional encoder is as follows. (Consider the state assignment A= 00, B=10, C=01,D=11)

| Present | Next State     | Next State      | Code Vector    | Code Vector    |      |
|---------|----------------|-----------------|----------------|----------------|------|
| state   | (with input=0) | (with input =1) | (with input=0) | (with input=1) |      |
| А       | А              | В               | 00             | 11             |      |
| В       | С              | D               | 01             | 10             |      |
| С       | А              | В               | 11             | 00             |      |
| D       | С              | D               | 10             | 01             | (03) |

**5C.** With block diagram explain how CDMA technology is used in mobile communication **(03)** 





(04)

(03)

(03)

(04)