Reg. No.

V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

MAKEUP EXAMINATIONS, DECEMBER 2018

SUBJECT: DIGITAL SIGNAL PROCESSING [ELE 3102]

		REVISED CREDIT SYSTEM	•
Time: 3 Hours		Date:23 DECEMBER 2018	Max. Marks: 50
I1	 nstructions to Candidates: Answer ALL the questi Missing data may be su Quick reference table r 	ons. Iitably assumed. nay be supplied	
1A.	A analog signal $x_a(t)$ is con $x_a(t) = 4\cos 90\pi t + 7\sin 150\pi$	nposed of a weighted sum of 3 sinusoid $t + 3\cos 450\pi t$	dal signals is given by
	 (i) Determine the discret (ii) What condition must (iii) Find the folding frequ (iv) Obtain the reconstruct 	e time signal $x[n]$ obtained after samplin be satisfied by sampling rate to ensure $y($ ency. ted signal $y(t)$?	ag at the rate of 300 Hz. $(t) = x_a(t)$?
1B.	Obtain a 4- point DFT of the s $x[n] = \delta[n+2] + 2\delta[n] - \delta[n-2]$	sequence,	(04)
1C.	For a given real sequence $x[x]$ Find the 6 point circular con- Given $h[n] = \delta[n] + 2$	$n] = \delta[n+2] + 2\delta[n-1] - \delta[n-2]$ volution of x[n] with h[n]. $\delta[n-1] + 3\delta[n-2]$	(03)
2A.	Consider a finite sequence x (i) Find y[n] if the 6 pc (ii) Find the 6 point sequ	$[n] = \delta[n-1] + 2\delta[n-2] + 3\delta[n-3] + 4\delta[n-4]$ wint DFT, $Y(k) = W_6^{-2k} X(k)$ whence, $z[n]$ if $Z(k) = Imag\{X(k)\}$	4] (03)
2B.	Determine the output $y[n]$ of $h[n] = 2\delta[n] - \delta[n-1] + 2\delta[n-1]$ and input signal is $x[n] = (-2)$	a filter whose impulse response is 2] 2) ^{n} { $u[n] - u[n-8]$ } using overlap – save r	nethod.

Take sub frame length of 4.

(03)

- **2C.** Synthesize the lattice ladder network for the system described by the difference equation $y[n] = \frac{1}{2}y[n-1] + \frac{1}{4}y[n-2] + x[n] + x[n-1]$. Comment on the stability of the system and also draw the lattice ladder network.
- **3A.** Briefly explain pole-zero placement method for high-pass and notch IIR filter design
- **3B.** Find the eight point DFT of $x[n] = 2\delta[n+3] 2\delta[n+1] 3\delta[n-2] + 4\delta[n-3]$, using Radix-2 DIF FFT algorithm. Draw the DIF FFT butterfly diagram and show the calculation for each stage. (04)
- **3C.** Determine a₁, a₂, c₁ and c₀ in terms of b₁ and b₂ so that the two systems shown in Fig. Q 3C are equivalent.
- **4A.** Design a 7-tap Band-Pass linear phase FIR digital filter using Hamming window for the following desired frequency response. Also draw the linear phase realization of the filter.

$$\left| H_{d} \left(e^{j\omega} \right) \right| = \begin{cases} 1; & \text{for } 0.4\pi \le |\omega| \le 0.75\pi \\ 0; & \text{otherwise} \end{cases}$$

- **4B.** Design a linear phase low-pass FIR digital filter using frequency sampling method with cutoff frequency of $\frac{\pi}{2}$ radian/sample by taking 9 samples of ideal frequency response. Also find the transfer function of the filter.
- **5A.** Establish a relation between analog and digital frequency with reference to bilinear transformation and also show that for every point in z-plane there is exact corresponding point in s-plane and vice-versa
- **5B.** Design a digital IIR low-pass Butterworth filter using Bilinear transformation (BLT) technique to satisfy the following specifications:

Take T=1 second

$$0.84 \le \left| H\left(e^{j\omega}\right) \right| \le 1; \text{ for } 0 \le \omega \le \frac{\pi}{3}$$
$$\left| H\left(e^{j\omega}\right) \right| \le 0.31; \text{ for } 0.75\pi \le \omega \le \pi$$

Fig. Q 3C

(04)

(06)

(05)

(04)

(05)

(04)

(02)